Kim Minjeong, Wu Guorong, Yap Pew-Thian, Shen Dinggang
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):306-14. doi: 10.1007/978-3-642-15745-5_38.
This paper presents a generalized learning based framework for improving both speed and accuracy of the existing deformable registration method. The key of our framework involves the utilization of a support vector regression (SVR) to learn the correlation between brain image appearances and their corresponding shape deformations to a template, for helping significantly cut down the computation cost and improve the robustness to local minima by using the learned correlation to instantly predict a good subject-specific deformation initialization for any given subject under registration. Our framework consists of three major parts: 1) training of SVR models based on the statistics of image samples and their shape deformations to capture intrinsic image-deformation correlations, 2) deformation prediction for a new subject with the trained SVR models to generate a subject-resemblance intermediate template by warping the original template with the predicted deformations, and 3) estimating of the residual deformation from the intermediate template to the subject for refined registration. Any existing deformable registration methods can be easily employed for training the SVR models and estimating the residual deformation. We have tested in this paper the two widely used deformable registration algorithms, i.e., HAMMER] and diffeomorphic demons, for demonstration of our proposed frameowrk. Experimental results show that, compared to the registration using the original methods (with no deformation prediction), our framework achieves a significant speedup (6X faster than HAMMER, and 3X faster than diffeomorphic demons), while maintaining comparable (or even slighly better) registration accuracy.
本文提出了一种基于广义学习的框架,用于提高现有可变形配准方法的速度和准确性。我们框架的关键在于利用支持向量回归(SVR)来学习脑图像外观与其到模板的相应形状变形之间的相关性,以便通过使用所学相关性为配准中的任何给定受试者即时预测良好的特定受试者变形初始化,从而显著降低计算成本并提高对局部最小值的鲁棒性。我们的框架由三个主要部分组成:1)基于图像样本及其形状变形的统计数据训练SVR模型,以捕获内在的图像 - 变形相关性;2)使用训练好的SVR模型对新受试者进行变形预测,通过用预测变形对原始模板进行扭曲来生成一个与受试者相似的中间模板;3)估计从中间模板到受试者的残余变形以进行精确配准。任何现有的可变形配准方法都可以轻松地用于训练SVR模型和估计残余变形。在本文中,我们测试了两种广泛使用的可变形配准算法,即HAMMER和微分同胚恶魔算法,以演示我们提出的框架。实验结果表明,与使用原始方法(无变形预测)进行配准相比,我们的框架实现了显著的加速(比HAMMER快6倍,比微分同胚恶魔算法快3倍),同时保持了相当(甚至略好)的配准精度。