Suppr超能文献

躯体运动和毛细胞纤毛力学,两者对于耳蜗放大都是必需的吗?

Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification?

机构信息

Department of Otolaryngology, Stanford University, Stanford, CA 94305, USA.

出版信息

Hear Res. 2011 Mar;273(1-2):109-22. doi: 10.1016/j.heares.2010.03.094. Epub 2010 Apr 27.

Abstract

Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process.

摘要

听觉器官已经进化到可以检测到声音在强度和频率上的几个数量级。尽管声音所涉及的能量在热力学上是有限的,但检测极限仍达到了原子水平。已经进化出了几种机制来解释这些不同听觉器官的显著频率选择性、动态范围和灵敏度,这些机制统称为主动过程或耳蜗放大器。不同物种的听觉器官之间的相似性为了解驱动耳蜗放大器发展的因素提供了线索。这些特性包括:音位图、双毛细胞系统的出现、传出和传入神经支配的分离、盖膜的作用,以及从固有调谐和放大向更依赖终末器官的过程的转变。主动过程的两个主要贡献者是毛束力学和外毛细胞电动力,前者存在于所有经过测试的毛细胞器官中,后者仅存在于哺乳动物耳蜗外毛细胞中。这两个过程都有优点和缺点,毛束力学如何与外毛细胞电动力相互作用在哺乳动物系统中产生主动过程是一个高度争议的问题。提出了一个假设,即毛束力学为大多数毛细胞提供放大和滤波,而在哺乳动物耳蜗中,外毛细胞的运动为每个周期提供放大,由毛束驱动,提供频率选择性(与盖膜协同作用)和压缩非线性。将主动过程的组件分开可能为该过程的调节提供更多的位点。

相似文献

1
Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification?
Hear Res. 2011 Mar;273(1-2):109-22. doi: 10.1016/j.heares.2010.03.094. Epub 2010 Apr 27.
2
Effects of cochlear loading on the motility of active outer hair cells.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5474-9. doi: 10.1073/pnas.1302911110. Epub 2013 Mar 18.
3
The interplay between active hair bundle motility and electromotility in the cochlea.
J Acoust Soc Am. 2010 Sep;128(3):1175-90. doi: 10.1121/1.3463804.
4
Active hair bundle movements and the cochlear amplifier.
J Am Acad Audiol. 2003 Aug;14(6):325-38.
5
Cochlear amplification, outer hair cells and prestin.
Curr Opin Neurobiol. 2008 Aug;18(4):370-6. doi: 10.1016/j.conb.2008.08.016. Epub 2008 Oct 4.
6
Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification.
Neuron. 2008 May 8;58(3):333-9. doi: 10.1016/j.neuron.2008.02.028.
7
Motility-associated hair-bundle motion in mammalian outer hair cells.
Nat Neurosci. 2005 Aug;8(8):1028-34. doi: 10.1038/nn1509. Epub 2005 Jul 24.
8
Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21076-80. doi: 10.1073/pnas.1219379110. Epub 2012 Dec 3.
9
Active hair bundle movements in auditory hair cells.
J Physiol. 2006 Oct 1;576(Pt 1):29-36. doi: 10.1113/jphysiol.2006.115949. Epub 2006 Aug 3.
10
Micro- and nanomechanics of the cochlear outer hair cell.
Annu Rev Biomed Eng. 2001;3:169-94. doi: 10.1146/annurev.bioeng.3.1.169.

引用本文的文献

1
Unloading outer hair cell bundles in vivo does not yield evidence of spontaneous oscillations in the mouse cochlea.
Hear Res. 2022 Sep 15;423:108473. doi: 10.1016/j.heares.2022.108473. Epub 2022 Mar 1.
2
Mechanotransduction in mammalian sensory hair cells.
Mol Cell Neurosci. 2022 May;120:103706. doi: 10.1016/j.mcn.2022.103706. Epub 2022 Feb 23.
3
Manipulation of the Endocochlear Potential Reveals Two Distinct Types of Cochlear Nonlinearity.
Biophys J. 2020 Nov 17;119(10):2087-2101. doi: 10.1016/j.bpj.2020.10.005. Epub 2020 Oct 20.
4
Sound perception and its effects in plants and algae.
Plant Signal Behav. 2020 Dec 1;15(12):1828674. doi: 10.1080/15592324.2020.1828674. Epub 2020 Oct 13.
5
Petrosal morphology and cochlear function in Mesozoic stem therians.
PLoS One. 2019 Aug 14;14(8):e0209457. doi: 10.1371/journal.pone.0209457. eCollection 2019.
6
Reticular lamina and basilar membrane vibrations in living mouse cochleae.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9910-5. doi: 10.1073/pnas.1607428113. Epub 2016 Aug 11.
8
Active amplification in insect ears: mechanics, models and molecules.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Jan;201(1):19-37. doi: 10.1007/s00359-014-0969-0. Epub 2014 Dec 11.
9
Modelling cochlear mechanics.
Biomed Res Int. 2014;2014:150637. doi: 10.1155/2014/150637. Epub 2014 Jul 23.
10
Vibration of the organ of Corti within the cochlear apex in mice.
J Neurophysiol. 2014 Sep 1;112(5):1192-204. doi: 10.1152/jn.00306.2014. Epub 2014 Jun 11.

本文引用的文献

1
Effectiveness of hair bundle motility as the cochlear amplifier.
Biophys J. 2009 Nov 18;97(10):2653-63. doi: 10.1016/j.bpj.2009.08.039.
2
Efferent innervation to the auditory basilar papilla of scincid lizards.
J Comp Neurol. 2009 Sep 1;516(1):74-85. doi: 10.1002/cne.22101.
3
Pure ultrasonic communication in an endemic Bornean frog.
PLoS One. 2009;4(4):e5413. doi: 10.1371/journal.pone.0005413. Epub 2009 Apr 29.
4
Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging.
Nat Neurosci. 2009 May;12(5):553-8. doi: 10.1038/nn.2295. Epub 2009 Mar 29.
5
Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18669-74. doi: 10.1073/pnas.0805752105. Epub 2008 Nov 17.
6
Cochlear amplification, outer hair cells and prestin.
Curr Opin Neurobiol. 2008 Aug;18(4):370-6. doi: 10.1016/j.conb.2008.08.016. Epub 2008 Oct 4.
7
Making an effort to listen: mechanical amplification in the ear.
Neuron. 2008 Aug 28;59(4):530-45. doi: 10.1016/j.neuron.2008.07.012.
8
Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells.
Biophys J. 2008 Nov 15;95(10):4948-62. doi: 10.1529/biophysj.108.138560. Epub 2008 Aug 1.
9
Otoacoustic emissions from insect ears: evidence of active hearing?
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Jul;194(7):597-609. doi: 10.1007/s00359-008-0344-0. Epub 2008 May 31.
10
Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier.
Nat Neurosci. 2008 Jul;11(7):746-8. doi: 10.1038/nn.2129. Epub 2008 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验