Graduate Institute of Rehabilitation Science, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan.
J Appl Physiol (1985). 2010 Jul;109(1):219-29. doi: 10.1152/japplphysiol.00138.2010. Epub 2010 Apr 29.
Hypoxic preconditioning prevents cerebrovascular/cardiovascular disorders by increasing resistance to acute ischemic stress, but severe hypoxic exposure disturbs vascular hemodynamics. This study compared how various exercise regimens with/without hypoxia affect hemodynamics and oxygenation in cardiac, muscle, and cerebral tissues during severe hypoxic exposure. Sixty sedentary males were randomly divided into five groups. Each group (n = 12) received one of five interventions: 1) normoxic (21% O(2)) resting control, 2) hypoxic (15% O(2)) resting control, 3) normoxic exercise (50% maximum work rate under 21% O(2); N-E group), 4) hypoxic-relative exercise (50% maximal heart rate reserve under 15% O(2); H-RE group), or 5) hypoxic-absolute exercise (50% maximum work rate under 15% O(2); H-AE group) for 30 min/day, 5 days/wk, for 4 wk. A recently developed noninvasive bioreactance device was used to measure cardiac hemodynamics, and near-infrared spectroscopy was used to assess perfusion and oxygenation in the vastus lateralis (VL)/gastrocnemius (GN) muscles and frontal cerebral lobe (FC). Our results demonstrated that the H-AE group had a larger improvement in aerobic capacity compared with the N-E group. Both H-RE and H-AE ameliorated the suppression of cardiac stroke volume and the GN hyperemic response (Delta total Hb/min) and reoxygenation rate by acute 12% O(2) exposure. Simultaneously, the two hypoxic interventions enhanced perfusion (Delta total Hb) and O(2) extraction [Delta deoxyHb] of the VL muscle during the 12% O(2) exercise. Although acute 12% O(2) exercise decreased oxygenation (Delta O(2)Hb) of the FC, none of the 4-wk interventions influenced the cerebral perfusion and oxygenation during normoxic/hypoxic exercise tests. Therefore, we conclude that moderate hypoxic exercise training improves cardiopulmonary fitness and increases resistance to disturbance of cardiac hemodynamics by severe hypoxia, concurrence with enhancing O(2) delivery/utilization in skeletal muscles but not cerebral tissues.
低氧预处理通过增加对急性缺血应激的抵抗力来预防脑血管/心血管疾病,但严重的低氧暴露会扰乱血管血液动力学。本研究比较了在严重低氧暴露期间,有/无低氧的各种运动方案如何影响心脏、肌肉和脑组织的血液动力学和氧合。60 名久坐的男性被随机分为五组。每组(n=12)接受以下五种干预措施之一:1)常氧(21% O2)休息对照,2)低氧(15% O2)休息对照,3)常氧运动(50%最大工作率在 21% O2 下;N-E 组),4)低氧相对运动(50%最大心率储备在 15% O2 下;H-RE 组),或 5)低氧绝对运动(50%最大工作率在 15% O2 下;H-AE 组),每天 30 分钟,每周 5 天,持续 4 周。使用最近开发的非侵入性生物电阻抗设备测量心脏血液动力学,使用近红外光谱法评估股外侧肌(VL)/腓肠肌(GN)肌肉和额状脑叶(FC)的灌注和氧合。我们的结果表明,与 N-E 组相比,H-AE 组的有氧能力有更大的提高。H-RE 和 H-AE 均改善了急性 12% O2 暴露对心脏每搏量和 GN 充血反应(Delta 总 Hb/min)和再氧合率的抑制。同时,两种低氧干预措施增强了 VL 肌肉在 12% O2 运动期间的灌注(Delta 总 Hb)和 O2 提取[Delta deoxyHb]。虽然急性 12% O2 运动降低了 FC 的氧合(Delta O2Hb),但 4 周的干预措施均未影响在常氧/低氧运动试验期间的脑灌注和氧合。因此,我们得出结论,中度低氧运动训练可提高心肺适应性,并增加对严重低氧引起的心脏血液动力学干扰的抵抗力,同时增强骨骼肌的 O2 输送/利用,但不增强脑组织的 O2 输送/利用。