State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
BMC Evol Biol. 2010 May 4;10:128. doi: 10.1186/1471-2148-10-128.
Gene duplication provides raw genetic materials for evolutionary novelty and adaptation. The evolutionary fate of duplicated transcription factor genes is less studied although transcription factor gene plays important roles in many biological processes. TFIIAgamma is a small subunit of TFIIA that is one of general transcription factors required by RNA polymerase II. Previous studies identified two TFIIAgamma-like genes in rice genome and found that these genes either conferred resistance to rice bacterial blight or could be induced by pathogen invasion, raising the question as to their functional divergence and evolutionary fates after gene duplication.
We reconstructed the evolutionary history of the TFIIAgamma genes from main lineages of angiosperms and demonstrated that two TFIIAgamma genes (TFIIAgamma1 and TFIIAgamma5) arose from a whole genome duplication that happened in the common ancestor of grasses. Likelihood-based analyses with branch, codon, and branch-site models showed no evidence of positive selection but a signature of relaxed selective constraint after the TFIIAgamma duplication. In particular, we found that the nonsynonymous/synonymous rate ratio (omega = dN/dS) of the TFIIAgamma1 sequences was two times higher than that of TFIIAgamma5 sequences, indicating highly asymmetric rates of protein evolution in rice tribe and its relatives, with an accelerated rate of TFIIAgamma1 gene. Our expression data and EST database search further indicated that after whole genome duplication, the expression of TFIIAgamma1 gene was significantly reduced while TFIIAgamma5 remained constitutively expressed and maintained the ancestral role as a subunit of the TFIIA complex.
The evolutionary fate of TFIIAgamma duplicates is not consistent with the neofunctionalization model that predicts that one of the duplicated genes acquires a new function because of positive Darwinian selection. Instead, we suggest that subfunctionalization might be involved in TFIIAgamma evolution in grasses. The fact that both TFIIAgamma1 and TFIIAgamma5 genes were effectively involved in response to biotic or abiotic factors might be explained by either Dykhuizen-Hartl effect or buffering hypothesis.
基因复制为进化新颖性和适应性提供了原始的遗传物质。尽管转录因子基因在许多生物过程中起着重要作用,但复制转录因子基因的进化命运研究较少。TFIIAgamma 是 TFIIA 的一个小亚基,是 RNA 聚合酶 II 所需的一般转录因子之一。以前的研究在水稻基因组中鉴定了两个 TFIIAgamma 样基因,并发现这些基因要么赋予了对水稻细菌性条斑病的抗性,要么可以被病原体入侵诱导,这就提出了它们在功能分化和基因复制后的进化命运问题。
我们从被子植物的主要谱系重建了 TFIIAgamma 基因的进化历史,并证明两个 TFIIAgamma 基因(TFIIAgamma1 和 TFIIAgamma5)是由禾本科植物共同祖先发生的全基因组复制产生的。基于分支、密码子和分支位点模型的似然比分析没有发现正选择的证据,但在 TFIIAgamma 复制后,选择约束放松的特征明显。特别是,我们发现 TFIIAgamma1 序列的非同义/同义比(omega = dN/dS)比 TFIIAgamma5 序列高两倍,这表明在水稻族及其亲缘关系中,蛋白质进化的非对称率很高,TFIIAgamma1 基因的进化速度加快。我们的表达数据和 EST 数据库搜索进一步表明,在全基因组复制后,TFIIAgamma1 基因的表达显著降低,而 TFIIAgamma5 则保持组成型表达,并保持作为 TFIIA 复合物亚基的祖先作用。
TFIIAgamma 复制的进化命运与新功能化模型不一致,该模型预测一个复制基因由于正达尔文选择而获得新功能。相反,我们认为亚功能化可能涉及禾本科植物中 TFIIAgamma 的进化。TFIIAgamma1 和 TFIIAgamma5 基因都有效地参与了对生物或非生物因素的响应,这一事实可以用 Dykhuizen-Hartl 效应或缓冲假说来解释。