Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.
Biostatistics. 2010 Oct;11(4):676-92. doi: 10.1093/biostatistics/kxq021. Epub 2010 May 2.
While the commonly used log-rank test for survival times between 2 groups enjoys many desirable properties, sometimes the log-rank test and its related linear rank tests perform poorly when sample sizes are small. Similar concerns apply to interval estimates for treatment differences in this setting, though their properties are less well known. Standard permutation tests are one option, but these are not in general valid when the underlying censoring distributions in the comparison groups are unequal. We develop 2 methods for testing and interval estimation, for use with small samples and possibly unequal censoring, based on first imputing survival and censoring times and then applying permutation methods. One provides a heuristic justification for the approach proposed recently by Heinze and others (2003, Exact log-rank tests for unequal follow-up. Biometrics 59, 1151-1157). Simulation studies show that the proposed methods have good Type I error and power properties. For accelerated failure time models, compared to the asymptotic methods of Jin and others (2003, Rank-based inference for the accelerated failure time model. Biometrika 90, 341-353), the proposed methods yield confidence intervals with better coverage probabilities in small-sample settings and similar efficiency when sample sizes are large. The proposed methods are illustrated with data from a cancer study and an AIDS clinical trial.
虽然常用于两组生存时间的对数秩检验具有许多理想的特性,但在样本量较小时,对数秩检验及其相关的线性秩检验有时表现不佳。在这种情况下,治疗差异的区间估计也存在类似的问题,尽管它们的性质不太为人所知。标准的置换检验是一种选择,但当比较组中的潜在删失分布不相等时,一般来说这些检验并不有效。我们开发了 2 种用于小样本和可能不等删失的检验和区间估计的方法,该方法基于首先对生存时间和删失时间进行插补,然后应用置换方法。一种方法为 Heinze 等人(2003,不等随访的精确对数秩检验。Biometrics 59, 1151-1157)最近提出的方法提供了一种启发式的合理性。模拟研究表明,所提出的方法具有良好的Ⅰ型错误和功效特性。对于加速失效时间模型,与 Jin 等人(2003,加速失效时间模型的基于秩的推断。Biometrika 90, 341-353)的渐近方法相比,所提出的方法在小样本设置中具有更好的覆盖概率的置信区间,而在样本量大时具有相似的效率。该方法通过癌症研究和艾滋病临床试验的数据进行了说明。