Suppr超能文献

局部变异与平行进化:新热带类陨石坑湖慈鲷鱼类种复合体的形态和遗传多样性。

Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes.

机构信息

Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2010 Jun 12;365(1547):1763-82. doi: 10.1098/rstb.2009.0271.

Abstract

The polychromatic and trophically polymorphic Midas cichlid fish species complex (Amphilophus cf. citrinellus) is an excellent model system for studying the mechanisms of speciation and patterns of phenotypic diversification in allopatry and in sympatry. Here, we first review research to date on the species complex and the geological history of its habitat. We analyse body shape variation from all currently described species in the complex, sampled from six crater lakes (maximally 1.2-23.9 kyr old) and both great lakes in Nicaragua. We find that Midas cichlid populations in each lake have their own characteristic body shape. In lakes with multiple sympatric species of Midas cichlid, each species has a distinct body shape. Across the species complex, most body shape change relates to body depth, head, snout and mouth shape and caudal peduncle length. There is independent parallel evolution of an elongate limnetic species in at least two crater lakes. Mitochondrial genetic diversity is higher in crater lakes with multiple species. Midas cichlid species richness increases with the size and age of the crater lakes, though no such relationship exists for the other syntopic fishes. We suggest that crater lake Midas cichlids follow the predicted pattern of an adaptive radiation, with early divergence of each crater lake colonization, followed by intralacustrine diversification and speciation by ecological adaptation and sexual selection.

摘要

多态性和营养多态性的金头丽鱼物种复合体(Amphilophus cf. citrinellus)是研究异域和同域物种形成机制和表型多样化模式的绝佳模式系统。在这里,我们首先回顾了该物种复合体的研究现状及其栖息地的地质历史。我们分析了来自该复合体中六个陨石坑湖(最老的 1.2-23.9 千年)和尼加拉瓜两个大湖的所有目前描述的物种的体型变化。我们发现,每个湖泊中的金头丽鱼种群都有其自身独特的体型。在有多物种金头丽鱼共生的湖泊中,每个物种都有独特的体型。在整个物种复合体中,大多数体型变化与身体深度、头部、吻部和嘴形以及尾柄长度有关。至少有两个陨石坑湖中存在着长而浮游生物的物种的独立平行进化。具有多个物种的陨石坑湖中的线粒体遗传多样性更高。金头丽鱼的物种丰富度随着陨石坑湖的大小和年龄的增加而增加,尽管其他同域鱼类不存在这种关系。我们认为,陨石坑湖中的金头丽鱼遵循预期的适应辐射模式,每个陨石坑湖的早期分离,随后是湖泊内的多样化和通过生态适应和性选择的物种形成。

相似文献

1
4
The Midas cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes?
Mol Ecol. 2004 Jul;13(7):2061-76. doi: 10.1111/j.1365-294X.2004.02211.x.
8
Crater lake colonization by neotropical cichlid fishes.
Evolution. 2013 Jan;67(1):281-8. doi: 10.1111/j.1558-5646.2012.01755.x. Epub 2012 Aug 27.
9
Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes.
Mol Ecol. 2014 Apr;23(7):1828-45. doi: 10.1111/mec.12590. Epub 2013 Dec 16.
10
Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes.
Evolution. 2014 Jul;68(7):2145-55. doi: 10.1111/evo.12412. Epub 2014 May 5.

引用本文的文献

1
Visual pigment chromophore usage in Nicaraguan Midas cichlids: phenotypic plasticity and genetic assimilation of expression.
Hydrobiologia. 2025;852(15):3831-3845. doi: 10.1007/s10750-024-05660-w. Epub 2024 Aug 2.
5
Meristic co-evolution and genomic co-localization of lateral line scales and vertebrae in Central American cichlid fishes.
Ecol Evol. 2024 Sep 15;14(9):e70266. doi: 10.1002/ece3.70266. eCollection 2024 Sep.
6
Genetic basis of ecologically relevant body shape variation among four genera of cichlid fishes.
Mol Ecol. 2023 Jul;32(14):3975-3988. doi: 10.1111/mec.16977. Epub 2023 May 10.
8
Quantifying (non)parallelism of gut microbial community change using multivariate vector analysis.
Ecol Evol. 2022 Dec 28;12(12):e9674. doi: 10.1002/ece3.9674. eCollection 2022 Dec.
9
Morphometric and Genetic Description of Trophic Adaptations in Cichlid Fishes.
Biology (Basel). 2022 Aug 3;11(8):1165. doi: 10.3390/biology11081165.
10
Wnt11 acts on dermomyotome cells to guide epaxial myotome morphogenesis.
Elife. 2022 May 6;11:e71845. doi: 10.7554/eLife.71845.

本文引用的文献

1
ANALYZING TABLES OF STATISTICAL TESTS.
Evolution. 1989 Jan;43(1):223-225. doi: 10.1111/j.1558-5646.1989.tb04220.x.
2
3
COMMUNAL CARE AND KIDNAPPING OF YOUNG BY PARENTAL CICHLIDS.
Evolution. 1977 Sep;31(3):674-681. doi: 10.1111/j.1558-5646.1977.tb01059.x.
4
SKEPTICISM TOWARDS SANTA ROSALIA, OR WHY ARE THERE SO FEW KINDS OF ANIMALS?
Evolution. 1981 Jan;35(1):124-138. doi: 10.1111/j.1558-5646.1981.tb04864.x.
6
Why are there so many cichlid species?
Trends Ecol Evol. 1998 Jan 1;13(1):1-2. doi: 10.1016/s0169-5347(97)01239-1.
7
A species definition for the modern synthesis.
Trends Ecol Evol. 1995 Jul;10(7):294-9. doi: 10.1016/0169-5347(95)90031-4.
8
Phylogenetic relationships and evolutionary processes in East African cichlid fishes.
Trends Ecol Evol. 1993 Aug;8(8):279-84. doi: 10.1016/0169-5347(93)90255-N.
9
A revolution morphometrics.
Trends Ecol Evol. 1993 Apr;8(4):129-32. doi: 10.1016/0169-5347(93)90024-J.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验