Suppr超能文献

使用免费软件通过基于地标和轮廓的几何形态测量法对鱼类形态进行定量分析。

Quantitative Analysis of Fish Morphology Through Landmark and Outline-based Geometric Morphometrics with Free Software.

作者信息

Luo Du

机构信息

Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

出版信息

Bio Protoc. 2024 Oct 20;14(20):e5087. doi: 10.21769/BioProtoc.5087.

Abstract

Morphology underpins key biological and evolutionary processes that remain elusive. This is in part due to the limitations in robustly and quantitatively analyzing shapes within and between groups in an unbiased and high-throughput manner. Geometric morphometrics (GM) has emerged as a widely employed technique for studying shape variation in biology and evolution. This study presents a comprehensive workflow for conducting geometric morphometric analysis of fish morphology. The step-by-step manual provides detailed instructions for using popular free software, such as the TPS series, MorphoJ, ImageJ, and R, to carry out generalized Procrustes analysis (GPA), principal component analysis (PCA), discriminant function analysis (DFA), canonical variate analysis (CVA), mean shape analysis, and thin plate spline analysis (TPS). The Momocs package in R is specifically utilized for in-depth analysis of fish outlines. In addition, selected functions from the dplyr package are used to assist in the analysis. The full process of fish outline analysis is covered, including extracting outline coordinates, converting and scaling data, defining landmarks, creating data objects, analyzing outline differences, and visualizing results. In conclusion, the current protocol compiles a detailed method for evaluating fish shape variation based on landmarks and outlines. As the field of GM continues to evolve and related software develops rapidly, the limitations associated with morphological analysis of fish are expected to decrease. Interoperable data formats and analytical methods may facilitate the sharing of morphological data and help resolve related scientific problems. The convenience of this protocol allows for fast and effective morphological analysis. Furthermore, this detailed protocol could be adapted to assess image-based differences across a broader range of species or to analyze morphological data of the same species from different origins. Key features • This protocol provides a comprehensive set of commonly used GM-analyzing methods and visualizing skills plus supporting information to help assess the appropriate analysis method • By incorporating both landmarks and outlines, this protocol facilitates a thorough analysis of two-dimensional shape variation in fish, covering a wide range of morphological features • The simplified workflow and detailed procedures make it accessible for non-experienced users to successfully complete the analysis while also providing valuable insights for experienced users Graphical overview The steps include image acquisition as data sources, digitization of fish morphology using landmark-based methods, analysis of shape variation characteristics, and visualization of the results in relation to biological interpretation. Largemouth bass () is used as an example in the schematic representation.

摘要

形态学是关键生物学和进化过程的基础,但这些过程仍难以捉摸。部分原因在于,以无偏且高通量的方式对群体内部和群体之间的形状进行稳健且定量的分析存在局限性。几何形态测量学(GM)已成为研究生物学和进化中形状变异的广泛应用技术。本研究提出了一个用于对鱼类形态进行几何形态测量分析的综合工作流程。该分步手册提供了使用流行的免费软件(如TPS系列、MorphoJ、ImageJ和R)进行广义普氏分析(GPA)、主成分分析(PCA)、判别函数分析(DFA)、典型变量分析(CVA)、平均形状分析和薄板样条分析(TPS)的详细说明。R语言中的Momocs包专门用于深入分析鱼类轮廓。此外,还使用了dplyr包中的选定函数来辅助分析。涵盖了鱼类轮廓分析的全过程,包括提取轮廓坐标、转换和缩放数据、定义地标、创建数据对象、分析轮廓差异以及可视化结果。总之,当前方案汇编了一种基于地标和轮廓评估鱼类形状变异的详细方法。随着GM领域不断发展且相关软件迅速开发,预计与鱼类形态分析相关的局限性将会减少。可互操作的数据格式和分析方法可能会促进形态学数据的共享,并有助于解决相关科学问题。该方案的便利性使得快速有效的形态分析成为可能。此外,这个详细的方案可以适用于评估更广泛物种间基于图像的差异,或分析来自不同来源的同一物种的形态学数据。关键特性 • 本方案提供了一套全面的常用GM分析方法和可视化技巧以及支持信息,以帮助评估合适的分析方法 • 通过结合地标和轮廓,本方案有助于全面分析鱼类的二维形状变异,涵盖广泛的形态特征 • 简化的工作流程和详细的步骤使无经验的用户也能成功完成分析,同时也为有经验的用户提供有价值的见解 图形概述 步骤包括将图像采集作为数据源,使用基于地标的方法对鱼类形态进行数字化处理,分析形状变异特征,以及根据生物学解释对结果进行可视化。示意图中以大口黑鲈()为例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29cc/11540051/b1f5d6bae0cc/BioProtoc-14-20-5087-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验