Suppr超能文献

利用深度测序技术来描述转录调控序列的生物物理机制。

Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence.

机构信息

Department of Physics, Princeton University, Princeton, NJ 08544, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 May 18;107(20):9158-63. doi: 10.1073/pnas.1004290107. Epub 2010 May 3.

Abstract

Cells use protein-DNA and protein-protein interactions to regulate transcription. A biophysical understanding of this process has, however, been limited by the lack of methods for quantitatively characterizing the interactions that occur at specific promoters and enhancers in living cells. Here we show how such biophysical information can be revealed by a simple experiment in which a library of partially mutated regulatory sequences are partitioned according to their in vivo transcriptional activities and then sequenced en masse. Computational analysis of the sequence data produced by this experiment can provide precise quantitative information about how the regulatory proteins at a specific arrangement of binding sites work together to regulate transcription. This ability to reliably extract precise information about regulatory biophysics in the face of experimental noise is made possible by a recently identified relationship between likelihood and mutual information. Applying our experimental and computational techniques to the Escherichia coli lac promoter, we demonstrate the ability to identify regulatory protein binding sites de novo, determine the sequence-dependent binding energy of the proteins that bind these sites, and, importantly, measure the in vivo interaction energy between RNA polymerase and a DNA-bound transcription factor. Our approach provides a generally applicable method for characterizing the biophysical basis of transcriptional regulation by a specified regulatory sequence. The principles of our method can also be applied to a wide range of other problems in molecular biology.

摘要

细胞利用蛋白-DNA 和蛋白-蛋白相互作用来调节转录。然而,由于缺乏定量描述活细胞中特定启动子和增强子上发生的相互作用的方法,因此对该过程的生物物理理解一直受到限制。在这里,我们展示了如何通过一个简单的实验来揭示这种生物物理信息,在该实验中,根据其在体内转录活性对部分突变的调控序列文库进行分区,然后大规模测序。通过对该实验产生的序列数据进行计算分析,可以提供关于在特定结合位点排列的调控蛋白如何协同调节转录的精确定量信息。最近发现的似然和互信息之间的关系使得在面对实验噪声时能够可靠地提取关于调控生物物理学的精确信息成为可能。我们将实验和计算技术应用于大肠杆菌 lac 启动子,证明了能够从头鉴定调控蛋白结合位点、确定结合这些位点的蛋白的序列依赖性结合能,并且重要的是,测量 RNA 聚合酶和 DNA 结合转录因子之间的体内相互作用能。我们的方法为通过指定的调控序列表征转录调控的生物物理基础提供了一种普遍适用的方法。我们方法的原理也可以应用于分子生物学的广泛其他问题。

相似文献

2
Mapping DNA sequence to transcription factor binding energy in vivo.在体中将 DNA 序列映射到转录因子结合能。
PLoS Comput Biol. 2019 Feb 4;15(2):e1006226. doi: 10.1371/journal.pcbi.1006226. eCollection 2019 Feb.
8
Computational discovery of transcriptional regulatory rules.转录调控规则的计算发现
Bioinformatics. 2005 Sep 1;21 Suppl 2:ii101-7. doi: 10.1093/bioinformatics/bti1117.

引用本文的文献

3
The Environment-Dependent Regulatory Landscape of the Genome.基因组的环境依赖性调控格局
bioRxiv. 2025 May 15:2025.05.13.653802. doi: 10.1101/2025.05.13.653802.
9
Gauge fixing for sequence-function relationships.序列-功能关系的规范固定
PLoS Comput Biol. 2025 Mar 20;21(3):e1012818. doi: 10.1371/journal.pcbi.1012818. eCollection 2025.

本文引用的文献

5
Genome-wide mapping of in vivo protein-DNA interactions.体内蛋白质-DNA相互作用的全基因组图谱绘制。
Science. 2007 Jun 8;316(5830):1497-502. doi: 10.1126/science.1141319. Epub 2007 May 31.
6
Combinatorial transcriptional control of the lactose operon of Escherichia coli.大肠杆菌乳糖操纵子的组合式转录调控
Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):6043-8. doi: 10.1073/pnas.0606717104. Epub 2007 Mar 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验