Suppr超能文献

由回收蚕茧加固的分层多层细胞壁增强了蜂巢的结构完整性。

Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs.

作者信息

Zhang Kai, Duan Huiling, Karihaloo Bhushan L, Wang Jianxiang

机构信息

State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China.

出版信息

Proc Natl Acad Sci U S A. 2010 May 25;107(21):9502-6. doi: 10.1073/pnas.0912066107. Epub 2010 May 3.

Abstract

We reveal the sophisticated and hierarchical structure of honeybee combs and measure the elastic properties of fresh and old natural honeycombs at different scales by optical microscope, environmental scanning electron microscope, nano/microindentation, and by tension and shear tests. We demonstrate that the comb walls are continuously strengthened and stiffened without becoming fragile by the addition of thin wax layers reinforced by recycled silk cocoons reminiscent of modern fiber-reinforced composite laminates. This is done to increase its margin of safety against collapse due to a temperature increase. Artificial engineering honeycombs mimic only the macroscopic geometry of natural honeycombs, but have yet to achieve the microstructural sophistication of their natural counterparts. The natural honeycombs serve as a prototype of truly biomimetic cellular materials with hitherto unattainable improvement in stiffness, strength, toughness, and thermal stability.

摘要

我们揭示了蜜蜂蜂巢复杂的分层结构,并通过光学显微镜、环境扫描电子显微镜、纳米/微压痕以及拉伸和剪切试验,在不同尺度下测量新鲜和陈旧天然蜂巢的弹性特性。我们证明,通过添加由回收蚕茧加固的薄蜡层,蜂巢壁不断得到强化和硬化,而不会变得易碎,这让人联想到现代纤维增强复合材料层压板。这样做是为了提高其在温度升高时抗坍塌的安全裕度。人工工程蜂巢仅模仿天然蜂巢的宏观几何形状,但尚未达到其天然对应物的微观结构复杂性。天然蜂巢作为真正仿生细胞材料的原型,在刚度、强度、韧性和热稳定性方面有着迄今难以企及的改进。

相似文献

1
Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9502-6. doi: 10.1073/pnas.0912066107. Epub 2010 May 3.
2
Microstructures and mechanical properties of silks of silkworm and honeybee.
Acta Biomater. 2010 Jun;6(6):2165-71. doi: 10.1016/j.actbio.2009.12.030. Epub 2009 Dec 22.
3
Brood comb as a humidity buffer in honeybee nests.
Naturwissenschaften. 2010 Apr;97(4):429-33. doi: 10.1007/s00114-010-0655-1. Epub 2010 Mar 4.
4
Silkworm cocoons inspire models for random fiber and particulate composites.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041911. doi: 10.1103/PhysRevE.82.041911. Epub 2010 Oct 14.
5
The impact behaviour of silk cocoons.
J Exp Biol. 2013 Jul 15;216(Pt 14):2648-57. doi: 10.1242/jeb.082545.
6
Honeybee combs: construction through a liquid equilibrium process?
Naturwissenschaften. 2004 Jul;91(7):350-3. doi: 10.1007/s00114-004-0539-3. Epub 2004 Jun 15.
7
Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process.
Biomacromolecules. 2006 Jan;7(1):208-14. doi: 10.1021/bm0505888.
9
Ultrastructure of insect and spider cocoon silks.
Biomacromolecules. 2006 Oct;7(10):2901-8. doi: 10.1021/bm060528h.

引用本文的文献

2
A Bio-Inspired Perspective on Materials Sustainability.
Adv Mater. 2025 Jun;37(22):e2413096. doi: 10.1002/adma.202413096. Epub 2025 Jan 5.
4
Analysis of comb-gnawing behavior in Apis cerana cerana (Hymenoptera: Apidae).
J Insect Sci. 2024 Jan 1;24(1). doi: 10.1093/jisesa/ieae020.
6
Bioinspired Honeycomb Core Design: An Experimental Study of the Role of Corner Radius, Coping and Interface.
Biomimetics (Basel). 2020 Nov 4;5(4):59. doi: 10.3390/biomimetics5040059.
8
Advances in Fabrication Materials of Honeycomb Structure Films by the Breath-Figure Method.
Materials (Basel). 2013 Feb 4;6(2):460-482. doi: 10.3390/ma6020460.
10
Strength gradient enhances fatigue resistance of steels.
Sci Rep. 2016 Feb 24;6:22156. doi: 10.1038/srep22156.

本文引用的文献

1
Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk.
Nat Mater. 2010 Apr;9(4):359-67. doi: 10.1038/nmat2704. Epub 2010 Mar 14.
2
Microstructures and mechanical properties of silks of silkworm and honeybee.
Acta Biomater. 2010 Jun;6(6):2165-71. doi: 10.1016/j.actbio.2009.12.030. Epub 2009 Dec 22.
3
The transition from stiff to compliant materials in squid beaks.
Science. 2008 Mar 28;319(5871):1816-9. doi: 10.1126/science.1154117.
4
Bioinspired design and assembly of platelet reinforced polymer films.
Science. 2008 Feb 22;319(5866):1069-73. doi: 10.1126/science.1148726.
5
Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal.
Phys Rev Lett. 2007 Nov 23;99(21):215901. doi: 10.1103/PhysRevLett.99.215901. Epub 2007 Nov 19.
6
Wax perception in honeybees: contact is not necessary.
Naturwissenschaften. 2003 Sep;90(9):424-7. doi: 10.1007/s00114-003-0442-3. Epub 2003 Aug 2.
7
Materials become insensitive to flaws at nanoscale: lessons from nature.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5597-600. doi: 10.1073/pnas.0631609100. Epub 2003 May 5.
8
Structural basis for the fracture toughness of the shell of the conch Strombus gigas.
Nature. 2000 Jun 29;405(6790):1036-40. doi: 10.1038/35016535.
9
The crystal structure of waxes.
Acta Crystallogr B. 1995 Dec 1;51 ( Pt 6):1021-8. doi: 10.1107/s0108768195005465.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验