Suppr超能文献

肺炎链球菌中肺炎球菌ε-ζ抗毒素-毒素(PezAT)系统的组装动力学与稳定性

Assembly dynamics and stability of the pneumococcal epsilon zeta antitoxin toxin (PezAT) system from Streptococcus pneumoniae.

作者信息

Mutschler Hannes, Reinstein Jochen, Meinhart Anton

机构信息

Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany.

出版信息

J Biol Chem. 2010 Jul 9;285(28):21797-806. doi: 10.1074/jbc.M110.126250. Epub 2010 May 4.

Abstract

The pneumococcal epsilon zeta antitoxin toxin (PezAT) system is a chromosomally encoded, class II toxin antitoxin system from the human pathogen Streptococcus pneumnoniae. Neutralization of the bacteriotoxic protein PezT is carried out by complex formation with its cognate antitoxin PezA. Here we study the stability of the inhibitory complex in vivo and in vitro. We found that toxin release is impeded in Escherichia coli and Bacillus subtilis due to the proteolytic resistance of PezA once bound to PezT. These findings are supported by in vitro experiments demonstrating a strong thermodynamic stabilization of both proteins upon binding. A detailed kinetic analysis of PezAT assembly revealed that these particular features of PezAT are based on a strong, electrostatically guided binding mechanism leading to a stable toxin antitoxin complex with femtomolar affinity. Our data show that PezAT complex formation is distinct to all other conventional toxin antitoxin modules and a controlled mode of toxin release is required for activation.

摘要

肺炎链球菌εζ抗毒素毒素(PezAT)系统是一种由人类病原体肺炎链球菌染色体编码的II类毒素-抗毒素系统。细菌毒性蛋白PezT通过与其同源抗毒素PezA形成复合物来实现中和作用。在此,我们研究了抑制性复合物在体内和体外的稳定性。我们发现,由于PezA一旦与PezT结合就具有蛋白水解抗性,因此在大肠杆菌和枯草芽孢杆菌中,毒素的释放受到阻碍。体外实验表明,两种蛋白质结合后具有很强的热力学稳定性,这支持了上述发现。对PezAT组装的详细动力学分析表明,PezAT的这些特殊特征基于一种强大的、静电引导的结合机制,该机制导致形成具有飞摩尔亲和力的稳定毒素-抗毒素复合物。我们的数据表明,PezAT复合物的形成与所有其他传统毒素-抗毒素模块不同,并且激活需要一种受控的毒素释放模式。

相似文献

1
Assembly dynamics and stability of the pneumococcal epsilon zeta antitoxin toxin (PezAT) system from Streptococcus pneumoniae.
J Biol Chem. 2010 Jul 9;285(28):21797-806. doi: 10.1074/jbc.M110.126250. Epub 2010 May 4.
3
The Streptococcus pneumoniae pezAT Toxin-Antitoxin System Reduces β-Lactam Resistance and Genetic Competence.
Front Microbiol. 2016 Aug 25;7:1322. doi: 10.3389/fmicb.2016.01322. eCollection 2016.
5
A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis.
PLoS Biol. 2011 Mar;9(3):e1001033. doi: 10.1371/journal.pbio.1001033. Epub 2011 Mar 22.
6
A toxin-antitoxin module as a target for antimicrobial development.
Plasmid. 2010 Jan;63(1):31-9. doi: 10.1016/j.plasmid.2009.09.005. Epub 2009 Oct 1.
10
ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development.
J Mol Med (Berl). 2011 Dec;89(12):1183-94. doi: 10.1007/s00109-011-0797-4. Epub 2011 Aug 6.

引用本文的文献

2
Conformational change as a mechanism for toxin activation in bacterial toxin-antitoxin systems.
J Virol. 2024 Nov 19;98(11):e0151324. doi: 10.1128/jvi.01513-24. Epub 2024 Oct 24.
3
The Clinical and Genetic Characteristics of Meningitis in Neonates.
Int J Mol Sci. 2023 Oct 20;24(20):15387. doi: 10.3390/ijms242015387.
5
Dynamics-Based Regulatory Switches of Type II Antitoxins: Insights into New Antimicrobial Discovery.
Antibiotics (Basel). 2023 Mar 23;12(4):637. doi: 10.3390/antibiotics12040637.
7
Antibacterial activity of medicinal plants in Indonesia on Streptococcus pneumoniae.
PLoS One. 2022 Sep 13;17(9):e0274174. doi: 10.1371/journal.pone.0274174. eCollection 2022.
8
Emerging Fatal Ib/CC12 Hypervirulent Multiresistant in Young Infants With Bloodstream Infection in China.
Front Microbiol. 2021 Dec 15;12:767803. doi: 10.3389/fmicb.2021.767803. eCollection 2021.
9
Modulators of protein-protein interactions as antimicrobial agents.
RSC Chem Biol. 2021 Feb 3;2(2):387-409. doi: 10.1039/d0cb00205d. eCollection 2021 Apr 1.
10
Prokaryote toxin-antitoxin modules: Complex regulation of an unclear function.
Protein Sci. 2021 Jun;30(6):1103-1113. doi: 10.1002/pro.4071. Epub 2021 Apr 7.

本文引用的文献

1
Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD.
Environ Microbiol. 2010 May;12(5):1105-21. doi: 10.1111/j.1462-2920.2009.02147.x. Epub 2010 Jan 26.
2
Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus.
J Bacteriol. 2010 Mar;192(5):1416-22. doi: 10.1128/JB.00233-09. Epub 2009 Dec 28.
3
A toxin-antitoxin module as a target for antimicrobial development.
Plasmid. 2010 Jan;63(1):31-9. doi: 10.1016/j.plasmid.2009.09.005. Epub 2009 Oct 1.
4
RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB.
J Mol Biol. 2009 Nov 27;394(2):183-96. doi: 10.1016/j.jmb.2009.09.006. Epub 2009 Sep 8.
7
A toxin-antitoxin system promotes the maintenance of an integrative conjugative element.
PLoS Genet. 2009 Mar;5(3):e1000439. doi: 10.1371/journal.pgen.1000439. Epub 2009 Mar 27.
8
The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm.
Antimicrob Agents Chemother. 2009 Jun;53(6):2253-8. doi: 10.1128/AAC.00043-09. Epub 2009 Mar 23.
9
Fundamental aspects of protein-protein association kinetics.
Chem Rev. 2009 Mar 11;109(3):839-60. doi: 10.1021/cr800373w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验