Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
J Physiol. 2010 Jul 1;588(Pt 13):2417-29. doi: 10.1113/jphysiol.2010.188334. Epub 2010 May 4.
The physiological role of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiomyocytes remains unclear. Using spontaneously beating neonatal ventricular cardiomyocytes from wild-type (WT) or CFTR knockout (KO) mice, we examined the role of CFTR in the modulation of cardiomyocyte contraction rate. Contraction rates of spontaneously beating myocytes were captured by video imaging. Real-time changes in intracellular (Ca(2+)) and protein kinase A (PKA) activity were measured by fura-2 and fluorescence resonance energy transfer, respectively. Acute inhibition of CFTR in WT cardiomyocytes using the CFTR inhibitor CFTR(inh)-172 transiently inhibited the contraction rate. By contrast, cardiomyocytes from CFTR KO mice displayed normal contraction rates. Further investigation revealed that acute inhibition of CFTR activity in WT cardiomyocytes activated L-type Ca(2+) channels, leading to a transient increase of Ca(2+) and inhibition of PKA activity. Additionally, we found that contraction rate normalization following acute CFTR inhibition in WT cardiomyocytes or chronic deletion in cardiomyocytes from CFTR KO mice requires the activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and Ca(2+)-activated Cl(-) channels (CaCC) because simultaneous addition of myristoylated-autocamtide-2-related inhibitory peptide or niflumic acid and CFTR(inh)-172 to WT cardiomyocytes or treatment of cardiomyoctes from CFTR KO mice with these agents caused sustained attenuation of contraction rates. Our results demonstrate that regulation of cardiomyocyte contraction involves CFTR. They also reveal that activation of CaMKII and CaCC compensates for loss of CFTR function. Increased dependence on CaMKII upon loss of CFTR function might leave cystic fibrosis patients at increased risk of heart dysfunction and disease.
囊性纤维化跨膜电导调节因子(CFTR)在心肌细胞中的生理作用尚不清楚。本研究使用来自野生型(WT)或 CFTR 敲除(KO)小鼠的自发搏动的新生心室心肌细胞,研究 CFTR 在调节心肌细胞收缩率中的作用。通过视频成像捕获自发搏动心肌细胞的收缩率。通过荧光共振能量转移分别用 fura-2 和荧光共振能量转移测量细胞内[Ca(2+)](i)和蛋白激酶 A(PKA)活性的实时变化。用 CFTR 抑制剂 CFTR(inh)-172 急性抑制 WT 心肌细胞中的 CFTR,短暂抑制收缩率。相比之下,CFTR KO 小鼠的心肌细胞显示出正常的收缩率。进一步研究表明,WT 心肌细胞中 CFTR 活性的急性抑制激活了 L 型 Ca(2+)通道,导致 [Ca(2+)](i)的短暂增加和 PKA 活性的抑制。此外,我们发现,WT 心肌细胞中 CFTR 抑制后的收缩率正常化或 CFTR KO 小鼠心肌细胞中的慢性缺失需要 Ca(2+)/钙调蛋白依赖性激酶 II(CaMKII)和 Ca(2+)激活的 Cl(-)通道(CaCC)的激活,因为同时添加豆蔻酰-自磷酸酶-2 相关抑制肽或尼氟酸和 CFTR(inh)-172 到 WT 心肌细胞或用这些药物处理 CFTR KO 小鼠的心肌细胞会导致收缩率持续衰减。我们的研究结果表明,心肌细胞收缩的调节涉及 CFTR。它们还表明,CaMKII 和 CaCC 的激活补偿了 CFTR 功能的丧失。CFTR 功能丧失时对 CaMKII 的依赖性增加可能使囊性纤维化患者患心脏功能障碍和疾病的风险增加。