Suppr超能文献

CFTR 功能障碍的心肌细胞需要 CaMKII 和 Ca(2+)-激活的 Cl(-)通道活性来维持收缩率。

Cardiomyocytes with disrupted CFTR function require CaMKII and Ca(2+)-activated Cl(-) channel activity to maintain contraction rate.

机构信息

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

J Physiol. 2010 Jul 1;588(Pt 13):2417-29. doi: 10.1113/jphysiol.2010.188334. Epub 2010 May 4.

Abstract

The physiological role of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiomyocytes remains unclear. Using spontaneously beating neonatal ventricular cardiomyocytes from wild-type (WT) or CFTR knockout (KO) mice, we examined the role of CFTR in the modulation of cardiomyocyte contraction rate. Contraction rates of spontaneously beating myocytes were captured by video imaging. Real-time changes in intracellular (Ca(2+)) and protein kinase A (PKA) activity were measured by fura-2 and fluorescence resonance energy transfer, respectively. Acute inhibition of CFTR in WT cardiomyocytes using the CFTR inhibitor CFTR(inh)-172 transiently inhibited the contraction rate. By contrast, cardiomyocytes from CFTR KO mice displayed normal contraction rates. Further investigation revealed that acute inhibition of CFTR activity in WT cardiomyocytes activated L-type Ca(2+) channels, leading to a transient increase of Ca(2+) and inhibition of PKA activity. Additionally, we found that contraction rate normalization following acute CFTR inhibition in WT cardiomyocytes or chronic deletion in cardiomyocytes from CFTR KO mice requires the activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and Ca(2+)-activated Cl(-) channels (CaCC) because simultaneous addition of myristoylated-autocamtide-2-related inhibitory peptide or niflumic acid and CFTR(inh)-172 to WT cardiomyocytes or treatment of cardiomyoctes from CFTR KO mice with these agents caused sustained attenuation of contraction rates. Our results demonstrate that regulation of cardiomyocyte contraction involves CFTR. They also reveal that activation of CaMKII and CaCC compensates for loss of CFTR function. Increased dependence on CaMKII upon loss of CFTR function might leave cystic fibrosis patients at increased risk of heart dysfunction and disease.

摘要

囊性纤维化跨膜电导调节因子(CFTR)在心肌细胞中的生理作用尚不清楚。本研究使用来自野生型(WT)或 CFTR 敲除(KO)小鼠的自发搏动的新生心室心肌细胞,研究 CFTR 在调节心肌细胞收缩率中的作用。通过视频成像捕获自发搏动心肌细胞的收缩率。通过荧光共振能量转移分别用 fura-2 和荧光共振能量转移测量细胞内[Ca(2+)](i)和蛋白激酶 A(PKA)活性的实时变化。用 CFTR 抑制剂 CFTR(inh)-172 急性抑制 WT 心肌细胞中的 CFTR,短暂抑制收缩率。相比之下,CFTR KO 小鼠的心肌细胞显示出正常的收缩率。进一步研究表明,WT 心肌细胞中 CFTR 活性的急性抑制激活了 L 型 Ca(2+)通道,导致 [Ca(2+)](i)的短暂增加和 PKA 活性的抑制。此外,我们发现,WT 心肌细胞中 CFTR 抑制后的收缩率正常化或 CFTR KO 小鼠心肌细胞中的慢性缺失需要 Ca(2+)/钙调蛋白依赖性激酶 II(CaMKII)和 Ca(2+)激活的 Cl(-)通道(CaCC)的激活,因为同时添加豆蔻酰-自磷酸酶-2 相关抑制肽或尼氟酸和 CFTR(inh)-172 到 WT 心肌细胞或用这些药物处理 CFTR KO 小鼠的心肌细胞会导致收缩率持续衰减。我们的研究结果表明,心肌细胞收缩的调节涉及 CFTR。它们还表明,CaMKII 和 CaCC 的激活补偿了 CFTR 功能的丧失。CFTR 功能丧失时对 CaMKII 的依赖性增加可能使囊性纤维化患者患心脏功能障碍和疾病的风险增加。

相似文献

1
Cardiomyocytes with disrupted CFTR function require CaMKII and Ca(2+)-activated Cl(-) channel activity to maintain contraction rate.
J Physiol. 2010 Jul 1;588(Pt 13):2417-29. doi: 10.1113/jphysiol.2010.188334. Epub 2010 May 4.
2
Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents.
Circ Res. 2006 Nov 10;99(10):1092-9. doi: 10.1161/01.RES.0000249369.71709.5c. Epub 2006 Oct 12.
3
MRP4 and CFTR in the regulation of cAMP and β-adrenergic contraction in cardiac myocytes.
Eur J Pharmacol. 2012 Apr 15;681(1-3):80-7. doi: 10.1016/j.ejphar.2012.02.018. Epub 2012 Feb 20.
6
TRPA1 ion channel stimulation enhances cardiomyocyte contractile function via a CaMKII-dependent pathway.
Channels (Austin). 2017 Nov 2;11(6):587-603. doi: 10.1080/19336950.2017.1365206. Epub 2017 Aug 25.
7
Cardiac ion channel current modulation by the CFTR inhibitor GlyH-101.
Biochem Biophys Res Commun. 2011 Apr 29;408(1):12-7. doi: 10.1016/j.bbrc.2011.03.089. Epub 2011 Mar 31.
8
Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6082-7. doi: 10.1073/pnas.0902661107. Epub 2010 Mar 15.

引用本文的文献

2
Cardiac involvement in cystic fibrosis evaluated using cardiopulmonary magnetic resonance.
Int J Cardiovasc Imaging. 2022 May;38(5):1121-1131. doi: 10.1007/s10554-021-02496-6. Epub 2022 Jan 7.
3
Cardiovascular System Involvement in Cystic Fibrosis.
Cureus. 2021 Jul 29;13(7):e16723. doi: 10.7759/cureus.16723. eCollection 2021 Jul.
4
Cystic Fibrosis Transmembrane Conductance Regulator Genotype, Not Circulating Catecholamines, Influences Cardiovascular Function in Patients with Cystic Fibrosis.
Clin Med Insights Circ Respir Pulm Med. 2019 Mar 29;13:1179548419835788. doi: 10.1177/1179548419835788. eCollection 2019.
5
Subclinical Left Ventricular Dysfunction is Influenced by Genotype Severity in Patients with Cystic Fibrosis.
Clin Med Insights Circ Respir Pulm Med. 2018 Aug 19;12:1179548418794154. doi: 10.1177/1179548418794154. eCollection 2018.
6
Exercise Stroke Volume in Adult Cystic Fibrosis: A Comparison of Acetylene Pulmonary Uptake and Oxygen Pulse.
Clin Med Insights Circ Respir Pulm Med. 2018 Jul 25;12:1179548418790564. doi: 10.1177/1179548418790564. eCollection 2018.
7
Proteostasis in cardiac health and disease.
Nat Rev Cardiol. 2017 Nov;14(11):637-653. doi: 10.1038/nrcardio.2017.89. Epub 2017 Jun 29.
8
CaMKII: The molecular villain that aggravates cardiovascular disease.
Exp Ther Med. 2017 Mar;13(3):815-820. doi: 10.3892/etm.2017.4034. Epub 2017 Jan 11.
9
The relationship between cardiac hemodynamics and exercise tolerance in cystic fibrosis.
Heart Lung. 2016 May-Jun;45(3):283-90. doi: 10.1016/j.hrtlng.2016.03.001. Epub 2016 Apr 1.
10
The impact of Cystic Fibrosis Transmembrane Regulator Disruption on cardiac function and stress response.
J Cyst Fibros. 2016 Jan;15(1):34-42. doi: 10.1016/j.jcf.2015.06.003. Epub 2015 Jun 25.

本文引用的文献

1
Ca2+/calcineurin regulation of cloned vascular K ATP channels: crosstalk with the protein kinase A pathway.
Br J Pharmacol. 2009 Jun;157(4):554-64. doi: 10.1111/j.1476-5381.2009.00221.x. Epub 2009 May 7.
2
Reporting ethical matters in the Journal of Physiology: standards and advice.
J Physiol. 2009 Feb 15;587(Pt 4):713-9. doi: 10.1113/jphysiol.2008.167387.
4
ATP-binding cassette transporters in human heart failure.
Naunyn Schmiedebergs Arch Pharmacol. 2008 May;377(3):231-43. doi: 10.1007/s00210-008-0279-6. Epub 2008 Apr 8.
5
Calcium cycling and signaling in cardiac myocytes.
Annu Rev Physiol. 2008;70:23-49. doi: 10.1146/annurev.physiol.70.113006.100455.
6
Simulation analysis of intracellular Na+ and Cl- homeostasis during beta 1-adrenergic stimulation of cardiac myocyte.
Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):171-86. doi: 10.1016/j.pbiomolbio.2007.07.005. Epub 2007 Aug 1.
7
Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains.
Physiol Rev. 2007 Jul;87(3):965-1010. doi: 10.1152/physrev.00049.2006.
8
Effects of monocarboxylic acid-derived Cl- channel blockers on depolarization-activated potassium currents in rat ventricular myocytes.
Exp Physiol. 2007 May;92(3):549-59. doi: 10.1113/expphysiol.2007.037069. Epub 2007 Feb 15.
9
Multiple downstream proarrhythmic targets for calmodulin kinase II: moving beyond an ion channel-centric focus.
Cardiovasc Res. 2007 Mar 1;73(4):657-66. doi: 10.1016/j.cardiores.2006.12.009. Epub 2006 Dec 12.
10
Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes.
J Mol Cell Cardiol. 2007 Jan;42(1):98-105. doi: 10.1016/j.yjmcc.2006.10.002. Epub 2006 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验