State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, People's Republic of China.
Nanotechnology. 2007 Dec 12;18(49):495201. doi: 10.1088/0957-4484/18/49/495201. Epub 2007 Nov 15.
This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.
本文提出了一种新颖的通用逻辑门,利用纳米器件的电流量化特性。在电子波导 (EW) 和单电子 (SE) 转门等纳米器件中,通道电流是控制电压的阶梯量化函数。我们利用这一独特的特性来紧凑地实现布尔函数。首先,我们提出了周期性阈值逻辑门 (PTTG) 的概念,并使用 EW 和 SE 转门构建了一个紧凑的 PTTG。我们表明,单个 PTTG 可以实现任意三输入布尔函数,而使用两个 PTTG 可以实现任意四输入布尔函数。然后,我们使用一个 PTTG 构建了一个通用可编程双输入逻辑门,该逻辑门可用于实现所有双输入布尔函数。我们还使用一个 PTTG 构建了可编程三输入逻辑门。与线性阈值逻辑门相比,使用 PTTG 可以更紧凑地构建数字电路。所提出的 PTTG 有望在未来的智能纳米数字系统中得到应用。