Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA.
Phys Chem Chem Phys. 2010 Jun 7;12(21):5694-700. doi: 10.1039/b926414k. Epub 2010 May 5.
We demonstrate the successful use of hard X-ray photoelectron spectroscopy (HAXPES) for selectively probing the platinum partial d-density of states (DOS) in a Pt-Cu nanoparticle catalyst which shows activity superior to pure Pt towards the oxygen-reduction reaction (ORR). The information about occupied Pt d-band states was complemented by Pt L(2)-edge X-ray absorption near-edge spectroscopy (XANES), which probes unoccupied valence states. We found a significant electronic perturbation of the Pt projected d-DOS which was narrowed and shifted to higher binding energy compared to pure platinum. The effect of this electronic structure perturbation on the chemical properties of the nanoparticle surface is discussed in terms of the d-band model. We have thereby demonstrated that the combination of L-edge spectroscopy and HAXPES allows for an experimental derivation of the valence electronic structure in an element-specific way for 5d metal catalysts.
我们成功地使用硬 X 射线光电子能谱(HAXPES)选择性地探测 Pt-Cu 纳米粒子催化剂中铂的部分 d 态密度(DOS),该催化剂在氧还原反应(ORR)中表现出优于纯 Pt 的活性。Pt L(2)-边 X 射线吸收近边光谱(XANES)补充了有关占据的 Pt d 带态的信息,该光谱探测未占据的价态。我们发现 Pt 投影 d-DOS 受到显著的电子微扰,与纯铂相比,其变窄并向更高的结合能移动。根据 d 带模型讨论了这种电子结构微扰对纳米粒子表面化学性质的影响。因此,我们已经证明,L 边光谱和 HAXPES 的组合允许以元素特异性的方式实验推导 5d 金属催化剂的价电子结构。