Suppr超能文献

电子金属-载体相互作用调控单原子铂催化析氢反应

Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction.

作者信息

Shi Yi, Ma Zhi-Rui, Xiao Yi-Ying, Yin Yun-Chao, Huang Wen-Mao, Huang Zhi-Chao, Zheng Yun-Zhe, Mu Fang-Ya, Huang Rong, Shi Guo-Yue, Sun Yi-Yang, Xia Xing-Hua, Chen Wei

机构信息

Department of Chemistry, National University of Singapore, Singapore, Singapore.

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

出版信息

Nat Commun. 2021 May 21;12(1):3021. doi: 10.1038/s41467-021-23306-6.

Abstract

Tuning metal-support interaction has been considered as an effective approach to modulate the electronic structure and catalytic activity of supported metal catalysts. At the atomic level, the understanding of the structure-activity relationship still remains obscure in heterogeneous catalysis, such as the conversion of water (alkaline) or hydronium ions (acid) to hydrogen (hydrogen evolution reaction, HER). Here, we reveal that the fine control over the oxidation states of single-atom Pt catalysts through electronic metal-support interaction significantly modulates the catalytic activities in either acidic or alkaline HER. Combined with detailed spectroscopic and electrochemical characterizations, the structure-activity relationship is established by correlating the acidic/alkaline HER activity with the average oxidation state of single-atom Pt and the Pt-H/Pt-OH interaction. This study sheds light on the atomic-level mechanistic understanding of acidic and alkaline HER, and further provides guidelines for the rational design of high-performance single-atom catalysts.

摘要

调节金属-载体相互作用被认为是调节负载型金属催化剂电子结构和催化活性的有效方法。在原子水平上,在多相催化中,如将水(碱性)或水合氢离子(酸性)转化为氢气(析氢反应,HER),对结构-活性关系的理解仍然模糊不清。在这里,我们揭示了通过电子金属-载体相互作用对单原子铂催化剂氧化态的精细控制,显著调节了酸性或碱性HER中的催化活性。结合详细的光谱和电化学表征,通过将酸性/碱性HER活性与单原子铂的平均氧化态以及Pt-H/Pt-OH相互作用相关联,建立了结构-活性关系。这项研究为酸性和碱性HER的原子水平机理理解提供了启示,并进一步为高性能单原子催化剂的合理设计提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b233/8140142/7a65246bd828/41467_2021_23306_Fig1_HTML.jpg

相似文献

3
Effect of ZrS load single/dual-atom catalysts on the hydrogen evolution reaction: A first-principles study.
J Comput Chem. 2023 Jan 5;44(1):15-26. doi: 10.1002/jcc.27010. Epub 2022 Sep 28.
6
Pt Single Atoms Supported on N-Doped Mesoporous Hollow Carbon Spheres with Enhanced Electrocatalytic H -Evolution Activity.
Adv Mater. 2021 May;33(18):e2008599. doi: 10.1002/adma.202008599. Epub 2021 Apr 1.
8
Self-Accommodation Induced Electronic Metal-Support Interaction on Ruthenium Site for Alkaline Hydrogen Evolution Reaction.
Adv Mater. 2023 May;35(21):e2301369. doi: 10.1002/adma.202301369. Epub 2023 Mar 29.
9
Tuning Electron Transfer in Atomic-Scale Pt-Supported Catalysts for the Alkaline Hydrogen Oxidation Reaction.
Inorg Chem. 2023 Mar 27;62(12):5032-5039. doi: 10.1021/acs.inorgchem.3c00293. Epub 2023 Mar 15.

引用本文的文献

2
Fully exposed Pt cluster catalysts enable cascade oxidation of polyol to dicarboxylic acid.
Nat Commun. 2025 Jul 31;16(1):7030. doi: 10.1038/s41467-025-62192-0.
3
4
Enhanced catalytic activity on atomically dispersed PtSe two-dimensional layers.
Nat Commun. 2025 Jul 3;16(1):6139. doi: 10.1038/s41467-025-61320-0.
6
Green synthesis of ultrathin WS nanosheets for efficient hydrogen evolution reaction.
RSC Adv. 2025 Jun 9;15(24):19305-19317. doi: 10.1039/d5ra00712g. eCollection 2025 Jun 4.
7
Surface steric effect in heterogeneous catalysis as the origin of the high activity induced by strong metal-support interactions.
iScience. 2025 Apr 17;28(5):112470. doi: 10.1016/j.isci.2025.112470. eCollection 2025 May 16.
8
Platinum Nanoparticles on Metalloid Antimony Functionalized Graphitic Nanoplatelets for Enhanced Water Electrolysis.
Small. 2025 Jun;21(25):e2501408. doi: 10.1002/smll.202501408. Epub 2025 May 9.
10
Sustainable and cost-efficient hydrogen production using platinum clusters at minimal loading.
Nat Commun. 2025 May 9;16(1):4314. doi: 10.1038/s41467-025-59450-6.

本文引用的文献

1
Electronic Metal-Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis.
Adv Mater. 2020 Dec;32(49):e2003300. doi: 10.1002/adma.202003300. Epub 2020 Oct 30.
4
Interfacial Structure of Water as a New Descriptor of the Hydrogen Evolution Reaction.
Angew Chem Int Ed Engl. 2020 Dec 7;59(50):22397-22402. doi: 10.1002/anie.202007567. Epub 2020 Oct 7.
5
Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts.
Chem Rev. 2020 Nov 11;120(21):11810-11899. doi: 10.1021/acs.chemrev.0c00094. Epub 2020 Aug 13.
6
Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity.
Angew Chem Int Ed Engl. 2020 Nov 9;59(46):20691-20696. doi: 10.1002/anie.202009776. Epub 2020 Sep 3.
7
Single-Atom Alloy Catalysis.
Chem Rev. 2020 Nov 11;120(21):12044-12088. doi: 10.1021/acs.chemrev.0c00078. Epub 2020 Jun 26.
9
Enhancing the Hydrogen Evolution Reaction Activity of Platinum Electrodes in Alkaline Media Using Nickel-Iron Clusters.
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):10934-10938. doi: 10.1002/anie.202000383. Epub 2020 Apr 30.
10
Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction.
Nat Commun. 2020 Feb 25;11(1):1029. doi: 10.1038/s41467-020-14848-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验