Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
Biochemistry. 2010 Jun 22;49(24):4998-5006. doi: 10.1021/bi100080p.
The complex of the regulator of G protein signaling (RGS), Gbeta(5)-RGS7, can inhibit signal transduction via the M3 muscarinic acetylcholine receptor (M3R). RGS7 consists of three distinct structural entities: the DEP domain and its extension DHEX, the Ggamma-like (GGL) domain, which is permanently bound to Gbeta subunit Gbeta(5), and the RGS domain responsible for the interaction with Galpha subunits. Inhibition of the M3R by Gbeta(5)-RGS7 is independent of the RGS domain but requires binding of the DEP domain to the third intracellular loop of the receptor. Recent studies identified the dynamic intramolecular interaction between the Gbeta(5) and DEP domains, which suggested that the Gbeta(5)-RGS7 dimer could alternate between the "open" and "closed" conformations. Here, we identified point mutations that weaken DEP-Gbeta(5) binding, presumably stabilizing the open state, and tested their effects on the interaction of Gbeta(5)-RGS7 with the M3R. We found that these mutations facilitated binding of Gbeta(5)-RGS7 to the recombinant third intracellular loop of the M3R but did not enhance its ability to inhibit M3R-mediated Ca(2+) mobilization. This led us to the idea that the M3R can effectively induce the Gbeta(5)-RGS7 dimer to open; such a mechanism would require a region of the receptor distinct from the third loop. Indeed, we found that the C-terminus of M3R interacts with Gbeta(5)-RGS7. Truncation of the C-terminus rendered the M3R insensitive to inhibition by wild-type Gbeta(5)-RGS7; however, the open mutant of Gbeta(5)-RGS7 was able to inhibit signaling by the truncated M3R. The GST fusion of the M3R C-tail could not bind to wild-type Gbeta(5)-RGS7 but could associate with its open mutant as well as with the separated recombinant DEP domain or Gbeta(5). Taken together, our data are consistent with the following model: interaction of the M3R with Gbeta(5)-RGS7 causes the DEP domain and Gbeta(5) to dissociate from each other and bind to the C-tail, and the DEP domain also binds to the third loop, thereby inhibiting M3R-mediated signaling.
G 蛋白信号转导调节因子(RGS)复合物、Gβ(5)-RGS7 可以抑制 M3 毒蕈碱乙酰胆碱受体(M3R)的信号转导。RGS7 由三个不同的结构实体组成:DEP 结构域及其延伸 DHEX、Gγ样(GGL)结构域,该结构域与 Gβ 亚基 Gβ(5)永久结合,以及负责与 Galpha 亚基相互作用的 RGS 结构域。Gβ(5)-RGS7 对 M3R 的抑制作用不依赖于 RGS 结构域,但需要 DEP 结构域与受体的第三细胞内环结合。最近的研究确定了 Gβ(5)和 DEP 结构域之间的动态分子内相互作用,这表明 Gβ(5)-RGS7 二聚体可以在“开放”和“关闭”构象之间交替。在这里,我们鉴定了削弱 DEP-Gβ(5)结合的点突变,推测稳定了开放状态,并测试了它们对 Gβ(5)-RGS7 与 M3R 相互作用的影响。我们发现这些突变促进了 Gβ(5)-RGS7 与重组 M3R 第三细胞内环的结合,但并没有增强其抑制 M3R 介导的 Ca(2+)动员的能力。这使我们想到,M3R 可以有效地诱导 Gβ(5)-RGS7 二聚体开放;这种机制需要受体中不同于第三环的区域。事实上,我们发现 M3R 的 C 端与 Gβ(5)-RGS7 相互作用。M3R 的 C 端截断使 M3R 对野生型 Gβ(5)-RGS7 的抑制作用不敏感;然而,Gβ(5)-RGS7 的开放突变体能够抑制截断的 M3R 的信号转导。M3R 的 GST 融合不能与野生型 Gβ(5)-RGS7 结合,但可以与它的开放突变体以及分离的重组 DEP 结构域或 Gβ(5)结合。总之,我们的数据与以下模型一致:M3R 与 Gβ(5)-RGS7 的相互作用导致 DEP 结构域和 Gβ(5)彼此解离并与 C 端结合,DEP 结构域也与第三环结合,从而抑制 M3R 介导的信号转导。