Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
Am J Hum Genet. 2024 Mar 7;111(3):473-486. doi: 10.1016/j.ajhg.2024.01.005. Epub 2024 Feb 13.
Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gβ5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.
从全基因组关联研究 (GWAS) 中鉴定出的疾病相关变异经常映射到基因组的非编码区域,如内含子和基因间区域。如果仅仅依赖于基因无关的基因组研究方法,可能会限制与阿尔茨海默病 (AD) 等多基因疾病相关的相关基因的鉴定。为了克服这种潜在的限制,我们开发了一种基因约束的分析方法,该方法仅考虑影响基因编码序列的中度和高风险变体。我们在此报告了该方法在包含 181,388 名无 AD 和 AD 个体的公开可用数据集上的应用,以及由此确定的 660 个可能与非洲裔/非裔美国人中 AD 患病率较高相关的基因。通过与来自 2728 名 AD 病例对照样本的 23 个大脑区域的转录组分析相结合,我们集中研究了九个可能增加 AD 风险的基因:AACS、GNB5、GNS、HIPK3、MED13、SHC2、SLC22A5、VPS35 和 ZNF398。GNB5 是编码 Gβ5 的异三聚体 G 蛋白β家族的第五个成员,主要在神经元中表达,对于小鼠大脑中的正常神经元发育至关重要。人类中 GNB5 的纯合或复合杂合功能丧失先前与发育迟缓、认知障碍和心律失常的综合征有关。在验证实验中,我们证实 Gnb5 杂合性增强了 AD 模型小鼠大脑中淀粉样斑块和神经原纤维缠结的形成。这些结果表明,基因约束分析可以补充 GWAS 鉴定 AD 相关基因的能力,并且可能更广泛地适用于其他多基因疾病。