Suppr超能文献

通过量子力学/分子力学模拟研究无序有机半导体的电子性质。

Electronic properties of disordered organic semiconductors via QM/MM simulations.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.

出版信息

Acc Chem Res. 2010 Jul 20;43(7):995-1004. doi: 10.1021/ar900246s.

Abstract

Organic semiconductors (OSCs) have recently received significant attention for their potential use in photovoltaic, light emitting diode, and field effect transistor devices. Part of the appeal of OSCs is the disordered, amorphous nature of these materials, which makes them more flexible and easier to process than their inorganic counterparts. In addition to their technological applications, OSCs provide an attractive laboratory for examining the chemistry of heterogeneous systems. Because OSCs are both electrically and optically active, researchers have access to a wealth of electrical and spectroscopic probes that are sensitive to a variety of localized electronic states in these materials. In this Account, we review the basic concepts in first-principles modeling of the electronic properties of disordered OSCs. There are three theoretical ingredients in the computational recipe. First, Marcus theory of nonadiabatic electron transfer (ET) provides a direct link between energy and kinetics. Second, constrained density functional theory (CDFT) forms the basis for an ab initio model of the diabatic charge states required in ET. Finally, quantum mechanical/molecular mechanical (QM/MM) techniques allow us to incorporate the influence of the heterogeneous environment on the diabatic states. As an illustration, we apply these ideas to the small molecule OSC tris(8- hydroxyquinolinato)aluminum (Alq(3)). In films, Alq(3) can possess a large degree of short-range order, placing it in the middle of the order-disorder spectrum (in this spectrum, pure crystals represent one extreme and totally amorphous structures the opposite extreme). We show that the QM/MM recipe reproduces the transport gap, charge carrier hopping integrals, optical spectra, and reorganization energies of Alq(3) in quantitative agreement with available experiments. However, one cannot specify any of these quantities accurately with a single number. Instead, one must characterize each property by a distribution that reflects the influence of the heterogeneous environment on the electronic states involved. For example, the hopping integral between a given pair of Alq(3) molecules can vary by as much as a factor of 5 on the nanosecond timescale, but the integrals for two different pairs can easily differ by a factor of 100. To accurately predict mesoscopic properties such as carrier mobilities based on these calculations, researchers must account for the dynamic range of the microscopic inputs, rather than just their average values. Thus, we find that many of the computational tools required to characterize these materials are now available. As we continue to improve this computational toolbox, we envision a future scenario in which researchers can use basic information about OSC deposition to simulate device operation on the atomic scale. This type of simulation could allow researchers to obtain data that not only aids in the interpretation of experimental results but also guides the design of more efficient devices.

摘要

有机半导体 (OSC) 因其在光伏、发光二极管和场效应晶体管器件中的潜在应用而受到广泛关注。OSC 的吸引力之一在于这些材料无序、非晶的性质,这使得它们比无机对应物更灵活、更容易加工。除了其技术应用外,OSC 还为研究多相体系的化学提供了一个有吸引力的实验室。由于 OSC 同时具有电学和光学活性,研究人员可以使用大量对这些材料中各种局部电子态敏感的电学和光谱探针。在本综述中,我们回顾了无序 OSC 电子性质的第一性原理建模的基本概念。计算方法有三个理论成分。首先,非绝热电子转移 (ET) 的 Marcus 理论为能量和动力学之间提供了直接联系。其次,受限密度泛函理论 (CDFT) 为 ET 所需的离域电荷态的从头算模型奠定了基础。最后,量子力学/分子力学 (QM/MM) 技术使我们能够将异质环境对离域态的影响纳入其中。作为说明,我们将这些想法应用于小分子 OSC 三(8-羟基喹啉)铝 (Alq(3))。在薄膜中,Alq(3) 可以具有很大程度的短程有序,使其处于有序-无序谱的中间位置(在该谱中,纯晶体代表一个极端,完全无定形结构代表另一个极端)。我们表明,QM/MM 配方再现了 Alq(3) 的传输隙、电荷载流子跃迁积分、光学光谱和重组能,与可用实验定量一致。然而,人们不能用一个数字准确地指定这些数量中的任何一个。相反,必须通过反映电子态所涉及的异质环境影响的分布来表征每个性质。例如,给定的 Alq(3) 分子对之间的跃迁积分在纳秒时间尺度上可以变化高达 5 倍,但两个不同对之间的积分很容易相差 100 倍。为了基于这些计算准确预测载流子迁移率等介观性质,研究人员必须考虑微观输入的动态范围,而不仅仅是它们的平均值。因此,我们发现,表征这些材料所需的许多计算工具现在都可用。随着我们继续改进这个计算工具箱,我们设想了一种未来的情景,研究人员可以使用有关 OSC 沉积的基本信息来模拟原子尺度上的器件操作。这种类型的模拟可以使研究人员获得不仅有助于解释实验结果而且还指导设计更高效设备的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验