Peluzo Barbara M T C, Meena Rahul, Catalano Luca, Schweicher Guillaume, Ruggiero Michael T
Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
Université Libre de Bruxelles (ULB), Faculté des Sciences, Laboratoire de chimie des polyméres, Boulevard du Triomphe, Bruxelles, 1050, Belgium.
Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202507566. doi: 10.1002/anie.202507566. Epub 2025 May 29.
Organic semiconductors (OSCs) have garnered significant attention due to their potential use in flexible, lightweight, and cost-effective electronic devices. Despite their promise, the assembly of organic molecules into the condensed phase promotes a diverse set of lattice dynamics that introduce a detrimental modulation in the intermolecular electronic structure-termed dynamic disorder-that results in charge carrier mobilities that are orders of magnitude lower than inorganic semiconductors. This dynamic disorder is generally associated with low-frequency phonons, yet whether a small subset of modes or a broad range of phonons drives dynamic disorder remains contested. Resolving this debate is critical for defining how targeted phonon engineering could practically improve OSC performance. In this review, we explore progress toward uncovering the interplay between lattice dynamics and charge transport in OSCs, focusing on the critical role of thermally activated phonons. We describe the powerful insight that mode-resolved analyses of electron-phonon interactions lends toward the rational design of new materials. We highlight recent efforts to achieve this, showcasing proposed strategies to mitigate dynamic disorder through molecular and crystal design. This work offers an overview of the insight gained toward understanding the fundamental mechanisms governing charge transport in OSCs and outlines pathways for enhancing performance via targeted manipulation of interatomic/intermolecular interactions and resulting phonon modes.
有机半导体(OSCs)因其在柔性、轻质且经济高效的电子设备中的潜在应用而备受关注。尽管它们前景广阔,但有机分子组装成凝聚相时会引发一系列不同的晶格动力学,从而在分子间电子结构中引入有害调制——即所谓的动态无序,这导致电荷载流子迁移率比无机半导体低几个数量级。这种动态无序通常与低频声子有关,然而究竟是一小部分模式还是广泛的声子驱动动态无序仍存在争议。解决这一争论对于确定有针对性的声子工程如何切实提高有机半导体性能至关重要。在本综述中,我们探讨了在揭示有机半导体中晶格动力学与电荷传输之间相互作用方面取得的进展,重点关注热激活声子的关键作用。我们描述了对电子 - 声子相互作用进行模式分辨分析为新材料合理设计带来的深刻见解。我们强调了近期为实现这一目标所做的努力,展示了通过分子和晶体设计减轻动态无序的 proposed 策略。这项工作概述了在理解有机半导体中电荷传输基本机制方面所获得的见解,并概述了通过有针对性地操纵原子间/分子间相互作用以及由此产生的声子模式来提高性能的途径。