Suppr超能文献

细胞壁合成是枯草芽孢杆菌孢子形成过程中膜动态所必需的。

Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis.

机构信息

Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

出版信息

Mol Microbiol. 2010 May;76(4):956-70. doi: 10.1111/j.1365-2958.2010.07155.x. Epub 2010 Apr 1.

Abstract

During Bacillus subtilis sporulation, an endocytic-like process called engulfment results in one cell being entirely encased in the cytoplasm of another cell. The driving force underlying this process of membrane movement has remained unclear, although components of the machinery have been characterized. Here we provide evidence that synthesis of peptidoglycan, the rigid, strength bearing extracellular polymer of bacteria, is a key part of the missing force-generating mechanism for engulfment. We observed that sites of peptidoglycan synthesis initially coincide with the engulfing membrane and later with the site of engulfment membrane fission. Furthermore, compounds that block muropeptide synthesis or polymerization prevented membrane migration in cells lacking a component of the engulfment machinery (SpoIIQ), and blocked the membrane fission event at the completion of engulfment in all cells. In addition, these compounds inhibited bulge and vesicle formation that occur in spoIID mutant cells unable to initiate engulfment, as did genetic ablation of a protein that polymerizes muropeptides. This is the first report to our knowledge that peptidoglycan synthesis is necessary for membrane movements in bacterial cells and has implications for the mechanism of force generation during cytokinesis.

摘要

在枯草芽孢杆菌孢子形成过程中,一种称为吞噬的内吞样过程导致一个细胞完全被另一个细胞的细胞质包裹。虽然已经鉴定了该机制的组件,但该过程中膜运动的驱动力仍不清楚。在这里,我们提供的证据表明,肽聚糖的合成,即细菌的刚性、承载强度的细胞外聚合物,是吞噬作用缺失力产生机制的关键部分。我们观察到肽聚糖合成的部位最初与吞噬膜重合,随后与吞噬膜分裂的部位重合。此外,阻断肽聚糖合成或聚合的化合物可防止在缺乏吞噬机制组件(SpoIIQ)的细胞中膜迁移,并阻止所有细胞中吞噬作用完成时的膜分裂事件。此外,这些化合物抑制了在无法开始吞噬的 spoIID 突变细胞中发生的隆起和囊泡形成,就像聚合肽聚糖的蛋白质的遗传缺失一样。这是我们所知的第一个报道,即肽聚糖合成对于细菌细胞中膜运动是必需的,并且对细胞分裂过程中力产生的机制有影响。

相似文献

1
Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis.
Mol Microbiol. 2010 May;76(4):956-70. doi: 10.1111/j.1365-2958.2010.07155.x. Epub 2010 Apr 1.
4
The molecular architecture of engulfment during sporulation.
Elife. 2019 Jul 8;8:e45257. doi: 10.7554/eLife.45257.
5
SpoIID-mediated peptidoglycan degradation is required throughout engulfment during Bacillus subtilis sporulation.
J Bacteriol. 2010 Jun;192(12):3174-86. doi: 10.1128/JB.00127-10. Epub 2010 Apr 9.
7
The SpoIIQ landmark protein has different requirements for septal localization and immobilization.
Mol Microbiol. 2013 Sep;89(6):1053-68. doi: 10.1111/mmi.12333. Epub 2013 Aug 14.
8
Cell-wall remodeling drives engulfment during sporulation.
Elife. 2016 Nov 17;5:e18657. doi: 10.7554/eLife.18657.
10

引用本文的文献

4
FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteria.
PLoS Biol. 2021 Jun 29;19(6):e3001314. doi: 10.1371/journal.pbio.3001314. eCollection 2021 Jun.
5
Inducible intracellular membranes: molecular aspects and emerging applications.
Microb Cell Fact. 2020 Sep 4;19(1):176. doi: 10.1186/s12934-020-01433-x.
6
Shaping an Endospore: Architectural Transformations During Sporulation.
Annu Rev Microbiol. 2020 Sep 8;74:361-386. doi: 10.1146/annurev-micro-022520-074650. Epub 2020 Jul 13.
7
Sporulation and Germination in Clostridial Pathogens.
Microbiol Spectr. 2019 Nov;7(6). doi: 10.1128/microbiolspec.GPP3-0017-2018.
8
The engulfasome in C. difficile: Variations on protein machineries.
Anaerobe. 2019 Dec;60:102091. doi: 10.1016/j.anaerobe.2019.102091. Epub 2019 Aug 27.
9
The molecular architecture of engulfment during sporulation.
Elife. 2019 Jul 8;8:e45257. doi: 10.7554/eLife.45257.
10
Peptidoglycan degradation machinery in Clostridium difficile forespore engulfment.
Mol Microbiol. 2018 Nov;110(3):390-410. doi: 10.1111/mmi.14091.

本文引用的文献

1
SpoIID-mediated peptidoglycan degradation is required throughout engulfment during Bacillus subtilis sporulation.
J Bacteriol. 2010 Jun;192(12):3174-86. doi: 10.1128/JB.00127-10. Epub 2010 Apr 9.
3
A crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13759-64. doi: 10.1073/pnas.0904686106. Epub 2009 Aug 3.
4
Mechanical forces of fission yeast growth.
Curr Biol. 2009 Jul 14;19(13):1096-101. doi: 10.1016/j.cub.2009.05.031. Epub 2009 Jun 4.
5
Bacterial cell curvature through mechanical control of cell growth.
EMBO J. 2009 May 6;28(9):1208-19. doi: 10.1038/emboj.2009.61. Epub 2009 Mar 12.
6
Condensation of FtsZ filaments can drive bacterial cell division.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):121-6. doi: 10.1073/pnas.0807963106. Epub 2008 Dec 30.
7
Force generation by a dynamic Z-ring in Escherichia coli cell division.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):145-50. doi: 10.1073/pnas.0808657106. Epub 2008 Dec 29.
8
Cell shape and cell-wall organization in Gram-negative bacteria.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19282-7. doi: 10.1073/pnas.0805309105. Epub 2008 Dec 2.
9
Origin of contractile force during cell division of bacteria.
Phys Rev Lett. 2008 Oct 24;101(17):178101. doi: 10.1103/PhysRevLett.101.178101. Epub 2008 Oct 20.
10
Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin.
J Bacteriol. 2008 Dec;190(24):7904-9. doi: 10.1128/JB.01116-08. Epub 2008 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验