Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA.
J Neurophysiol. 2010 Jul;104(1):403-13. doi: 10.1152/jn.00204.2010. Epub 2010 May 5.
Dopaminergic neurons are subject to a significant background GABAergic input in vivo. The presence of this GABAergic background might be expected to inhibit dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead fire in single-spiking and burst firing modes. Here we present evidence that phasic changes in the tonic activity of GABAergic afferents are a potential extrinsic mechanism that triggers bursts and pauses in dopaminergic neurons. We find that spontaneous single-spiking is more sensitive to activation of GABA receptors than phasic N-methyl-D-aspartate (NMDA)-mediated burst firing in rat slices (P15-P31). Because tonic activation of GABA(A) receptors has previously been shown to suppress burst firing in vivo, our results suggest that the activity patterns seen in vivo are the result of a balance between excitatory and inhibitory conductances that interact with the intrinsic pacemaking currents observed in slices. Using the dynamic clamp technique, we applied balanced, constant NMDA and GABA(A) receptor conductances into dopaminergic neurons in slices. Bursts could be produced by disinhibition (phasic removal of the GABA(A) receptor conductance), and these bursts had a higher frequency than bursts produced by the same NMDA receptor conductance alone. Phasic increases in the GABA(A) receptor conductance evoked pauses in firing. In contrast to NMDA receptor, application of constant AMPA and GABA(A) receptor conductances caused the cell to go into depolarization block. These results support a bidirectional mechanism by which GABAergic inputs, in balance with NMDA receptor-mediated excitatory inputs, control the firing pattern of dopaminergic neurons.
在体内,多巴胺能神经元受到显著的背景 GABA 能传入的影响。这种 GABA 能背景的存在可能会抑制多巴胺能神经元的放电。然而,多巴胺能神经元并非全部处于静默状态,而是以单峰和爆发式放电模式放电。在这里,我们提供了证据表明,GABA 能传入的紧张活动的相位变化是触发多巴胺能神经元爆发和暂停的潜在外在机制。我们发现,自发的单峰放电比大鼠切片中相位 N-甲基-D-天冬氨酸 (NMDA) 介导的爆发式放电对 GABA 受体的激活更为敏感(P15-P31)。由于先前已经表明,GABA(A) 受体的紧张激活会抑制体内的爆发式放电,因此我们的结果表明,体内观察到的活动模式是兴奋性和抑制性电导之间相互作用的结果,这些电导与切片中观察到的内在起搏电流相互作用。使用动态钳位技术,我们将平衡、恒定的 NMDA 和 GABA(A) 受体电导应用于切片中的多巴胺能神经元。去抑制(相位去除 GABA(A) 受体电导)可以产生爆发,并且这些爆发的频率高于仅由相同 NMDA 受体电导产生的爆发。GABA(A) 受体电导的相位增加引起放电暂停。与 NMDA 受体不同,恒定 AMPA 和 GABA(A) 受体电导的应用会导致细胞进入去极化阻断。这些结果支持了一种双向机制,即 GABA 能传入与 NMDA 受体介导的兴奋性传入相平衡,控制多巴胺能神经元的放电模式。