Suppr超能文献

[Kaplan-Meier统计法是骨科结果生存测量的最合适工具吗?]

[Is Kaplan-Meier statistics the most appropriate tool for survivorship measurement of outcomes in orthopaedics?].

作者信息

Langová K, Gallo J

机构信息

Ustav lékarské biofyziky LF UP v Olomouci.

出版信息

Acta Chir Orthop Traumatol Cech. 2010 Apr;77(2):118-23.

Abstract

PURPOSE OF THE STUDY

An assessment of the results over a time period is an integral part of any treatment evaluation. A standard method used for this purpose is Kaplan-Meier survival analysis. The aim of this study was to show how, for total hip arthroplasty (THA), estimates of prosthesis survival probability can be affected by a factor known as competing events.

MATERIAL AND METHODS

A set of input data concerning competing events (death and loss to follow-up), in addition to the investigated event (revision THA), was analysed by both the Kaplan-Meier method and the method of cumulative incidence with the use of worst-case analysis.

RESULTS

Our results showed that, for the same input data, the Kaplan-Meier method gave lower estimates of prosthesis survival probability than the method of cumulative incidence. This difference increased with an increasing number of competing events occurring during the clinical study, and with an increasing duration of follow-up. These survival probability estimates can markedly be influenced by the use of worst-case analysis In our set of data this was more than 30%.

DISCUSSION

Reports in the orthopaedic literature still show a predominant use of the Kaplan-Meier method, although it is obvious that this is not always optimal for observational clinical studies. Also, it is not clear how beneficial is the use of worst-case analysis, because our and other authors' results suggest that not all patients lost to follow-up should be considered as failed. Therefore, insolvement of such analysis might markedly distort the real survival curves and to disadvantage evaluated the orthopaedic method.

CONCLUSIONS

In observational clinical studies involving a higher number of competing events, it is preferable to use the cumulative incidence method rather than Kaplan Meier analysis for statistical evaluation of the results. The former gives more exact estimates of prosthesis survival probability. It is also recommended to avoid modifying survival curves indiscriminately according to the results of worst-case analysis.

摘要

研究目的

对一段时间内的结果进行评估是任何治疗评估不可或缺的一部分。用于此目的的标准方法是Kaplan-Meier生存分析。本研究的目的是表明,对于全髋关节置换术(THA),假体生存概率的估计如何受到一种称为竞争事件的因素的影响。

材料与方法

除了研究事件(翻修THA)外,还分析了一组关于竞争事件(死亡和失访)的输入数据,采用Kaplan-Meier方法和累积发病率方法并运用最坏情况分析。

结果

我们的结果表明,对于相同的输入数据,Kaplan-Meier方法给出的假体生存概率估计值低于累积发病率方法。随着临床研究期间发生的竞争事件数量增加以及随访时间延长,这种差异会增大。这些生存概率估计值会受到最坏情况分析的显著影响。在我们的数据集中,这种影响超过30%。

讨论

骨科文献中的报告仍然显示Kaplan-Meier方法的使用占主导地位,尽管很明显这对于观察性临床研究并不总是最佳的。此外,使用最坏情况分析的益处尚不清楚,因为我们和其他作者的结果表明,并非所有失访患者都应被视为失败。因此,这种分析的介入可能会显著扭曲实际生存曲线,并对评估骨科方法不利。

结论

在涉及较多竞争事件的观察性临床研究中,对于结果的统计评估,最好使用累积发病率方法而非Kaplan-Meier分析。前者能给出更准确的假体生存概率估计值。还建议避免根据最坏情况分析的结果随意修改生存曲线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验