Suppr超能文献

将空间和时间方向池化与人类视觉中的群体解码解决方案相关联。

Relating spatial and temporal orientation pooling to population decoding solutions in human vision.

作者信息

Webb Ben S, Ledgeway Timothy, McGraw Paul V

机构信息

Visual Neuroscience Group, School of Psychology, University Park, University of Nottingham, Nottingham NG7 2RD, UK.

出版信息

Vision Res. 2010 Oct 28;50(22):2274-83. doi: 10.1016/j.visres.2010.04.019. Epub 2010 May 4.

Abstract

Spatial pooling is often considered synonymous with averaging (or other statistical combinations) of local information contained within a complex visual image. We have recently shown, however, that spatial pooling of motion signals is better characterized in terms of optimal decoding of neuronal populations rather than image statistics (Webb et al., 2007). Here we ask which computations guide the spatial and temporal pooling of local orientation signals in human vision. The observers' task was to discriminate which of two texture patterns had a more clockwise global orientation. Standard textures had a common orientation; comparison textures were chosen independently from a skewed (asymmetrical) probability distribution with distinct spatial or temporal statistics. We simulated observers' performance using different estimators (vector average, winner-takes-all and maximum likelihood) to decode the orientation-tuned activity of a population of model neurons. Our results revealed that the perceived global orientation of texture patterns coincided with the mean (or vector average read-out) of orientation signals accumulated over both space and time. To reconcile these results with our previous work on direction pooling, we varied stimulus duration. Perceived global orientation was accurately predicted by a vector average read-out of orientation signals at relatively short stimulus durations and maximum likelihood read-out at longer durations. Moreover, decreasing the luminance contrast of texture patterns increased the duration of the transition from a vector average to maximum likelihood read-out. Our results suggest that direction and orientation pooling use similar probabilistic read-out strategies when sufficient time is available.

摘要

空间池化通常被认为等同于对复杂视觉图像中包含的局部信息进行平均(或其他统计组合)。然而,我们最近表明,运动信号的空间池化在神经元群体的最优解码方面比图像统计更能得到很好的描述(韦伯等人,2007年)。在这里,我们要问的是,在人类视觉中,哪些计算指导着局部方向信号的空间和时间池化。观察者的任务是辨别两种纹理图案中哪一种具有更顺时针的全局方向。标准纹理具有共同的方向;比较纹理是从具有不同空间或时间统计的倾斜(不对称)概率分布中独立选择的。我们使用不同的估计器(向量平均、胜者全得和最大似然)来模拟观察者的表现,以解码一群模型神经元的方向调谐活动。我们的结果表明,纹理图案的感知全局方向与在空间和时间上积累的方向信号的平均值(或向量平均读出)一致。为了使这些结果与我们之前关于方向池化的工作相协调,我们改变了刺激持续时间。在相对较短的刺激持续时间内,通过方向信号的向量平均读出可以准确预测感知到的全局方向,而在较长的持续时间内则通过最大似然读出。此外,降低纹理图案的亮度对比度会增加从向量平均读出到最大似然读出的转变持续时间。我们的结果表明,当有足够的时间时,方向和方向池化使用类似的概率读出策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e8/2982753/13786953b291/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验