Suppr超能文献

基于信号检测论的项目和整体基视觉变化检测的解释:对哈里森、麦克斯泰尔和贝茨的回应。

A signal-detection account of item-based and ensemble-based visual change detection: A reply to Harrison, McMaster, and Bays.

机构信息

HSE University, Moscow, Russia.

Koç University, Istanbul, Turkey.

出版信息

J Vis. 2024 Feb 1;24(2):10. doi: 10.1167/jov.24.2.10.

Abstract

Growing empirical evidence shows that ensemble information (e.g., the average feature or feature variance of a set of objects) affects visual working memory for individual items. Recently, Harrison, McMaster, and Bays (2021) used a change detection task to test whether observers explicitly rely on ensemble representations to improve their memory for individual objects. They found that sensitivity to simultaneous changes in all memorized items (which also globally changed set summary statistics) rarely exceeded a level predicted by the so-called optimal summation model within the signal-detection framework. This model implies simple integration of evidence for change from all individual items and no additional evidence coming from ensemble. Here, we argue that performance at the level of optimal summation does not rule out the use of ensemble information. First, in two experiments, we show that, even if evidence from only one item is available at test, the statistics of the whole memory set affect performance. Second, we argue that optimal summation itself can be conceptually interpreted as one of the strategies of holistic, ensemble-based decision. We also redefine the reference level for the item-based strategy as the so-called "minimum rule," which predicts performance far below the optimum. We found that that both our and Harrison et al. (2021)'s observers consistently outperformed this level. We conclude that observers can rely on ensemble information when performing visual change detection. Overall, our work clarifies and refines the use of signal-detection analysis in measuring and modeling working memory.

摘要

越来越多的经验证据表明,整体信息(例如,一组物体的平均特征或特征方差)会影响个体项目的视觉工作记忆。最近,Harrison、McMaster 和 Bays(2021)使用变化检测任务来测试观察者是否明确依赖整体表示来提高对单个物体的记忆。他们发现,对所有记忆项目同时变化的敏感性(这些变化也会全局改变集合总结统计数据)很少超过信号检测框架中所谓的最优求和模型所预测的水平。该模型意味着简单地整合来自所有单个项目的变化证据,而没有来自整体的额外证据。在这里,我们认为最优求和水平的表现并不排除整体信息的使用。首先,在两个实验中,我们表明,即使在测试中只有一个项目的证据可用,整个记忆集的统计数据也会影响性能。其次,我们认为最优求和本身可以被概念性地解释为整体、基于整体的决策的一种策略。我们还重新定义了基于项目策略的参考水平为所谓的“最小规则”,它预测的性能远低于最优水平。我们发现,我们和 Harrison 等人(2021)的观察者的表现都明显优于这一水平。我们的结论是,观察者在执行视觉变化检测时可以依赖整体信息。总的来说,我们的工作澄清和完善了信号检测分析在测量和建模工作记忆中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbe/10902873/67d899c3d542/jovi-24-2-10-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验