Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Metab Eng. 2010 Sep;12(5):462-8. doi: 10.1016/j.ymben.2010.04.005. Epub 2010 May 4.
The biocatalytic reduction of D-xylose to xylitol requires separation of the substrate from L-arabinose, another major component of hemicellulosic hydrolysate. This step is necessitated by the innate promiscuity of xylose reductases, which can efficiently reduce L-arabinose to L-arabinitol, an unwanted byproduct. Unfortunately,due to the epimeric nature of D-xylose and L-arabinose, separation can be difficult, leading to high production costs. To overcome this issue, we engineered an E. coli strain to efficiently produce xylitol from D-xylose with minimal production of L-arabinitol byproduct. By combining this strain with a previously engineered xylose reductase mutant, we were able to eliminate L-arabinitol formation and produce xylitol to near 100% purity from an equiweight mixture of D-xylose, L-arabinose, and D-glucose.
需要将木糖还原酶从半纤维素水解物中的另一种主要成分 L-阿拉伯糖中分离出来,以实现 D-木糖到木糖醇的生物催化还原。这一步骤是由于木糖还原酶固有的混杂性所必需的,它可以有效地将 L-阿拉伯糖还原为 L-阿拉伯糖醇,这是一种不需要的副产物。不幸的是,由于 D-木糖和 L-阿拉伯糖的差向异构性质,分离可能很困难,导致生产成本高。为了克服这个问题,我们通过工程改造大肠杆菌菌株,使其能够从 D-木糖中高效生产木糖醇,同时最小化 L-阿拉伯糖醇副产物的生成。通过将这种菌株与之前工程改造的木糖还原酶突变体结合,我们能够消除 L-阿拉伯糖醇的形成,并从 D-木糖、L-阿拉伯糖和 D-葡萄糖的等重量混合物中生产出近 100%纯度的木糖醇。