生物材料红外光谱中的共振米氏散射——理解“色散伪像”。

Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.

机构信息

School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, UK M1 7DN.

出版信息

Analyst. 2009 Aug;134(8):1586-93. doi: 10.1039/b904808a. Epub 2009 Jun 11.

Abstract

Infrared spectroscopic cytology is potentially a powerful clinical tool. However, in order for it to be successful, practitioners must be able to extract reliably a pure absorption spectrum from a measured spectrum that often contains many confounding factors. The most intractable problem to date is the, so called, dispersion artefact which most prominently manifests itself as a sharp decrease in absorbance on the high wavenumber side of the amide I band in the measured spectrum, exhibiting a derivative-like line shape. In this paper we use synchrotron radiation FTIR micro-spectroscopy to record spectra of mono-dispersed poly(methyl methacrylate) (PMMA) spheres of systematically varying size and demonstrate that the spectral distortions in the data can be understood in terms of resonant Mie scattering. A full understanding of this effect will enable us to develop strategies for deconvolving the scattering contribution and recovering the pure absorption spectrum, thus removing one of the last technological barriers to the development of clinical spectroscopic cytology.

摘要

红外光谱细胞术具有成为一种强大的临床工具的潜力。然而,为了使它获得成功,从业者必须能够从经常包含许多混杂因素的测量光谱中可靠地提取出纯吸收光谱。迄今为止,最棘手的问题是所谓的色散伪像,它最突出的表现是在测量光谱的酰胺 I 带的高波数侧吸收急剧下降,呈现出类似导数的线形状。在本文中,我们使用同步辐射傅里叶变换红外显微光谱法记录了单分散聚甲基丙烯酸甲酯(PMMA)球体的光谱,这些球体的尺寸系统地变化,并证明了数据中的光谱扭曲可以用共振 Mie 散射来解释。对这种效应的全面理解将使我们能够开发出用于解卷积散射贡献并恢复纯吸收光谱的策略,从而消除临床光谱细胞术发展的最后一个技术障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索