Beisenova Aidana, Adi Wihan, Kang Shinwon, Germanson Kenzie B, Nam Simon, Rosas Samir, Biswas Shovasis Kumar, Patankar Manish S, Jeon Seog-Jin, Yesilkoy Filiz
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi-si, Gyeongbuk 39177, Republic of Korea.
ACS Nano. 2025 Apr 8;19(13):13273-13286. doi: 10.1021/acsnano.5c00624. Epub 2025 Mar 27.
Infrared (IR) spectroscopic fingerprinting is a powerful analytical tool for characterizing molecular compositions across biological, environmental, and industrial samples through their specific vibrational modes. Specifically, when the sample is characterized in resonant plasmonic cavities, as in the surface-enhanced mid-IR absorption spectroscopy (SEIRAS), highly sensitive and specific molecular detection can be achieved. However, current SEIRAS techniques rely on nanofabricated subwavelength antennas, limited by low-throughput lithographic processes, lacking scalability to address broad biochemical sensing applications. To address this, we present an on-resonance SEIRAS method utilizing silver (Ag) cubic microparticles (Ag-CMPs) with robust mid-IR plasmonic resonances. These monocrystalline Ag-CMPs, featuring sharp edges and vertices, are synthesized via a high-throughput, wet-chemical process. When dispersed on gold mirror substrates with an aluminum oxide spacer, Ag-CMPs support enhanced near-field light-matter interactions in nanocavities while enabling far-field imaging-based optical interrogation due to their strong extinction cross sections. We demonstrate the detection of polydimethylsiloxane (PDMS) and bovine serum albumin (BSA) monolayers by simply probing individual Ag-CMPs, enabled by the resonant amplification of the characteristic vibrational absorptions. Furthermore, our single-particle SEIRAS (SP-SEIRAS) approach effectively analyzes complex human peritoneal fluid (PF) samples, eliminating the challenges of standard bulk sample measurements. This scalable and efficient SP-SEIRAS method addresses key limitations of IR spectroscopic fingerprinting techniques, unlocking possibilities for their widespread adoption in real-world biochemical sensing applications.
红外(IR)光谱指纹识别是一种强大的分析工具,可通过生物、环境和工业样品的特定振动模式来表征其分子组成。具体而言,当样品在共振等离子体腔中进行表征时,如在表面增强中红外吸收光谱(SEIRAS)中,可实现高灵敏度和高特异性的分子检测。然而,当前的SEIRAS技术依赖于纳米制造的亚波长天线,受限于低通量光刻工艺,缺乏扩展性以满足广泛的生化传感应用。为了解决这一问题,我们提出了一种利用具有强大中红外等离子体共振的银(Ag)立方微粒(Ag-CMPs)的共振SEIRAS方法。这些具有尖锐边缘和顶点的单晶Ag-CMPs是通过高通量湿化学工艺合成的。当分散在带有氧化铝间隔层的金镜基板上时,Ag-CMPs在纳米腔中支持增强的近场光-物质相互作用,同时由于其强大的消光截面,能够进行基于远场成像的光学询问。我们通过简单探测单个Ag-CMPs证明了对聚二甲基硅氧烷(PDMS)和牛血清白蛋白(BSA)单层的检测,这是通过特征振动吸收的共振放大实现的。此外,我们的单粒子SEIRAS(SP-SEIRAS)方法有效地分析了复杂的人腹膜液(PF)样品,消除了标准批量样品测量的挑战。这种可扩展且高效的SP-SEIRAS方法解决了红外光谱指纹识别技术的关键局限性,为其在实际生化传感应用中的广泛采用开辟了可能性。