Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Dalton Trans. 2010 Apr 7;39(13):3279-89. doi: 10.1039/b922312f. Epub 2010 Feb 13.
The direct cross-coupling reaction of arenes promoted by Pd(OAc)(2) is synthetically very useful because the preparation of a haloarene as a substrate is not necessary. This reaction interestingly only occurs in the presence of benzoquinone (BQ). DFT, MP2 to MP4(SDQ), and CCSD(T) computations elucidated the whole mechanism of this cross-coupling reaction and the key roles of BQ. The first step is the heterolytic C-H activation of benzo[h]quinoline (HBzq) by Pd(OAc)(2) to afford Pd(Bzq)(OAc). The Pd center is more electron-rich in Pd(Bzq)(OAc) than in Pd(OAc)(2). Hence, BQ easily coordinates to Pd(Bzq)(OAc) with a low activation barrier to afford a distorted square planar complex Pd(Bzq)(OAc)(BQ) which is as stable as Pd(Bzq)(OAc). Then, the second C-H activation of benzene occurs with a moderate activation barrier and small endothermicity. The final step is the reductive elimination which occurs with little barrier. The rate-determining step of the overall reaction is the second C-H activation whose activation barrier is considerably higher than that of the first C-H activation. BQ plays a key role in accelerating this reaction; (i) the phenyl group must change its position a lot to reach the transition state in the reductive elimination from the square planar intermediate Pd(Ph)(Bzq)(OAc) but only moderately in the reaction from the trigonal bipyramidal intermediate Pd(Ph)(Bzq)(OAc)(BQ). This is because BQ suppresses the phenyl group to take a position at a distance from the Bzq. (ii) BQ stabilizes the transition state and the product complex by the back-donation interaction. In the absence of BQ, the reductive elimination step has a much higher activation barrier. Though it was expected that the BQ coordination accelerates the second C-H activation of benzene by decreasing the electron density of Pd in Pd(Bzq)(OAc), the activation barrier of this second C-H activation is little influenced by BQ.
钯(II)促进的芳烃的直接交叉偶联反应在合成上非常有用,因为不需要制备卤代芳烃作为底物。有趣的是,该反应仅在苯醌 (BQ) 的存在下发生。DFT、MP2 至 MP4(SDQ) 和 CCSD(T) 计算阐明了该交叉偶联反应的整个机制以及 BQ 的关键作用。第一步是钯(II)对苯并[h]喹啉 (HBzq) 的异裂 C-H 活化,生成 Pd(Bzq)(OAc)。Pd(Bzq)(OAc) 中的 Pd 中心比 Pd(OAc)2 中的 Pd 中心富电子。因此,BQ 很容易与 Pd(Bzq)(OAc) 配位,形成一个扭曲的平面四方配合物 Pd(Bzq)(OAc)(BQ),其稳定性与 Pd(Bzq)(OAc) 相当。然后,苯发生第二次 C-H 活化,其活化能垒适中,吸热较小。最后一步是还原消除,其发生的能垒很小。整个反应的速控步骤是第二次 C-H 活化,其活化能垒远高于第一次 C-H 活化。BQ 在加速该反应中起着关键作用:(i) 在还原消除从平面四方中间体 Pd(Ph)(Bzq)(OAc) 到过渡态时,苯基必须改变其位置很多,但在反应从三角双锥中间体 Pd(Ph)(Bzq)(OAc)(BQ) 到过渡态时只需要适度改变;这是因为 BQ 抑制了苯基处于远离 Bzq 的位置。(ii) BQ 通过反馈给电子相互作用稳定了过渡态和产物配合物。在没有 BQ 的情况下,还原消除步骤的活化能垒要高得多。尽管人们预计 BQ 配位通过降低 Pd(Bzq)(OAc) 中的电子密度来加速苯的第二次 C-H 活化,但该第二次 C-H 活化的活化能垒受 BQ 的影响很小。