Suppr超能文献

外侧丘系核中听觉频率整合的底物。

Substrates of auditory frequency integration in a nucleus of the lateral lemniscus.

机构信息

Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, USA.

出版信息

Neuroscience. 2010 Aug 25;169(2):906-19. doi: 10.1016/j.neuroscience.2010.04.073. Epub 2010 May 6.

Abstract

In the intermediate nucleus of the lateral lemniscus (INLL), some neurons display a form of spectral integration in which excitatory responses to sounds at their best frequency are inhibited by sounds within a frequency band at least one octave lower. Previous work showed that this response property depends on low-frequency-tuned glycinergic input. To identify all sources of inputs to these INLL neurons, and in particular the low-frequency glycinergic input, we combined retrograde tracing with immunohistochemistry for the neurotransmitter glycine. We deposited a retrograde tracer at recording sites displaying either high best frequencies (>75 kHz) in conjunction with combination-sensitive inhibition, or at sites displaying low best frequencies (23-30 kHz). Most retrogradely labeled cells were located in the ipsilateral medial nucleus of the trapezoid body (MNTB) and contralateral anteroventral cochlear nucleus. Consistent labeling, but in fewer numbers, was observed in the ipsilateral lateral nucleus of the trapezoid body (LNTB), contralateral posteroventral cochlear nucleus, and a few other brainstem nuclei. When tracer deposits were combined with glycine immunohistochemistry, most double-labeled cells were observed in the ipsilateral MNTB (84%), with fewer in LNTB (13%). After tracer deposits at combination-sensitive recording sites, a striking result was that MNTB labeling occurred in both medial and lateral regions. This labeling appeared to overlap the MNTB labeling that resulted from tracer deposits in low-frequency recording sites of INLL. These findings suggest that MNTB is the most likely source of low-frequency glycinergic input to INLL neurons with high best frequencies and combination-sensitive inhibition. This work establishes an anatomical basis for frequency integration in the auditory brainstem.

摘要

在外侧丘系中间核(INLL)中,一些神经元表现出一种频率整合形式,即对最佳频率声音的兴奋性反应被至少一个倍频程低的频带内声音抑制。以前的工作表明,这种反应特性取决于低频调谐的甘氨酸能输入。为了确定这些 INLL 神经元的所有输入源,特别是低频甘氨酸能输入,我们将逆行追踪与神经递质甘氨酸的免疫组织化学相结合。我们在显示高最佳频率(>75 kHz)的记录部位与组合敏感抑制相结合,或者在显示低最佳频率(23-30 kHz)的部位沉积逆行示踪剂。大多数逆行标记的细胞位于同侧梯形体内侧核(MNTB)和对侧前腹耳蜗核。在同侧梯形体外侧核(LNTB)、对侧后腹耳蜗核以及少数其他脑干核中观察到一致的标记,但数量较少。当示踪剂沉积与甘氨酸免疫组织化学结合时,大多数双标记细胞位于同侧 MNTB(84%),同侧 LNTB(13%)较少。在组合敏感记录部位的示踪剂沉积后,一个显著的结果是 MNTB 标记发生在内侧和外侧区域。这种标记似乎与 INLL 低频记录部位示踪剂沉积引起的 MNTB 标记重叠。这些发现表明,MNTB 是具有高最佳频率和组合敏感抑制的 INLL 神经元低频甘氨酸能输入的最可能来源。这项工作为听觉脑干中的频率整合建立了一个解剖学基础。

相似文献

1
Substrates of auditory frequency integration in a nucleus of the lateral lemniscus.
Neuroscience. 2010 Aug 25;169(2):906-19. doi: 10.1016/j.neuroscience.2010.04.073. Epub 2010 May 6.
2
Circuitry underlying spectrotemporal integration in the auditory midbrain.
J Neurosci. 2011 Oct 5;31(40):14424-35. doi: 10.1523/JNEUROSCI.3529-11.2011.
3
Inputs to combination-sensitive neurons of the inferior colliculus.
J Comp Neurol. 1999 Jul 12;409(4):509-28. doi: 10.1002/(sici)1096-9861(19990712)409:4<509::aid-cne1>3.0.co;2-s.
4
6
Glycinergic inhibition creates a form of auditory spectral integration in nuclei of the lateral lemniscus.
J Neurophysiol. 2009 Aug;102(2):1004-16. doi: 10.1152/jn.00040.2009. Epub 2009 Jun 10.
8
Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
Front Neural Circuits. 2014 Dec 16;8:144. doi: 10.3389/fncir.2014.00144. eCollection 2014.
9
The nuclei of the lateral lemniscus: unexpected players in the descending auditory pathway.
Front Neuroanat. 2023 Aug 9;17:1242245. doi: 10.3389/fnana.2023.1242245. eCollection 2023.

引用本文的文献

2
Intracellular recordings reveal integrative function of the basolateral amygdala in acoustic communication.
J Neurophysiol. 2023 Jun 1;129(6):1334-1343. doi: 10.1152/jn.00103.2023. Epub 2023 Apr 26.
3
Two distinct representations of social vocalizations in the basolateral amygdala.
J Neurophysiol. 2016 Feb 1;115(2):868-86. doi: 10.1152/jn.00953.2015. Epub 2015 Nov 4.
4
Forward masking in the medial nucleus of the trapezoid body of the rat.
Brain Struct Funct. 2016 May;221(4):2303-17. doi: 10.1007/s00429-015-1044-5. Epub 2015 Apr 29.
5
Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice.
Dongwuxue Yanjiu. 2014 Nov 18;35(6):500-9. doi: 10.13918/j.issn.2095-8137.2014.6.500.
6
Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus.
Front Neural Circuits. 2012 Oct 23;6:75. doi: 10.3389/fncir.2012.00075. eCollection 2012.
7
From behavioral context to receptors: serotonergic modulatory pathways in the IC.
Front Neural Circuits. 2012 Sep 6;6:58. doi: 10.3389/fncir.2012.00058. eCollection 2012.
8
Tonotopic organization of the superior olivary nucleus in the chicken auditory brainstem.
J Comp Neurol. 2012 May 1;520(7):1493-508. doi: 10.1002/cne.22807.
9
A novel coding mechanism for social vocalizations in the lateral amygdala.
J Neurophysiol. 2012 Feb;107(4):1047-57. doi: 10.1152/jn.00422.2011. Epub 2011 Nov 16.
10
Circuitry underlying spectrotemporal integration in the auditory midbrain.
J Neurosci. 2011 Oct 5;31(40):14424-35. doi: 10.1523/JNEUROSCI.3529-11.2011.

本文引用的文献

1
Glycinergic inhibition creates a form of auditory spectral integration in nuclei of the lateral lemniscus.
J Neurophysiol. 2009 Aug;102(2):1004-16. doi: 10.1152/jn.00040.2009. Epub 2009 Jun 10.
2
Temporal features of spectral integration in the inferior colliculus: effects of stimulus duration and rise time.
J Neurophysiol. 2009 Jul;102(1):167-80. doi: 10.1152/jn.91300.2008. Epub 2009 Apr 29.
3
5
On the role of the wideband inhibitor in the dorsal cochlear nucleus: a computational modeling study.
J Assoc Res Otolaryngol. 2008 Dec;9(4):506-20. doi: 10.1007/s10162-008-0133-z. Epub 2008 Aug 14.
6
7
Intracellular recordings from combination-sensitive neurons in the inferior colliculus.
J Neurophysiol. 2008 Aug;100(2):629-45. doi: 10.1152/jn.90390.2008. Epub 2008 May 21.
8
Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): projections from the cochlear nucleus.
Neuroscience. 2008 Jun 12;154(1):206-17. doi: 10.1016/j.neuroscience.2008.02.015. Epub 2008 Feb 20.
9
Glycinergic "inhibition" mediates selective excitatory responses to combinations of sounds.
J Neurosci. 2008 Jan 2;28(1):80-90. doi: 10.1523/JNEUROSCI.3572-07.2008.
10
Time-variant spectral peak and notch detection in echolocation-call sequences in bats.
J Exp Biol. 2008 Jan;211(Pt 1):9-14. doi: 10.1242/jeb.012823.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验