Laboratoire de Reproduction et Développement des Plantes, ENS-Lyon, CNRS, INRA, UCBL, France.
Cold Spring Harb Perspect Biol. 2010 Apr;2(4):a001487. doi: 10.1101/cshperspect.a001487. Epub 2010 Mar 24.
Plants continuously generate new tissues and organs through the activity of populations of undifferentiated stem cells, called meristems. Here, we discuss the so-called shoot apical meristem (SAM), which generates all the aerial parts of the plant. It has been known for many years that auxin plays a central role in the functioning of this meristem. Auxin is not homogeneously distributed at the SAM and it is thought that this distribution is interpreted in terms of differential gene expression and patterned growth. In this context, auxin transporters of the PIN and AUX families, creating auxin maxima and minima, are crucial regulators. However, auxin transport is not the only factor involved. Auxin biosynthesis genes also show specific, patterned activities, and local auxin synthesis appears to be essential for meristem function as well. In addition, auxin perception and signal transduction defining the competence of cells to react to auxin, add further complexity to the issue. To unravel this intricate signaling network at the SAM, systems biology approaches, involving not only molecular genetics but also live imaging and computational modeling, have become increasingly important.
植物通过未分化的干细胞群体的活动不断产生新的组织和器官,这些干细胞被称为分生组织。在这里,我们讨论所谓的茎尖分生组织(SAM),它产生植物的所有气生部分。多年来,人们已经知道生长素在这个分生组织的功能中起着核心作用。生长素在 SAM 中不是均匀分布的,人们认为这种分布是根据差异基因表达和模式化生长来解释的。在这种情况下,PIN 和 AUX 家族的生长素转运蛋白,形成生长素的最大值和最小值,是至关重要的调节因子。然而,生长素运输并不是唯一涉及的因素。生长素生物合成基因也表现出特定的、模式化的活性,局部生长素合成似乎对分生组织功能也是必不可少的。此外,生长素的感知和信号转导决定了细胞对生长素反应的能力,这为问题增加了更多的复杂性。为了解开 SAM 中这个复杂的信号网络,系统生物学方法,不仅涉及分子遗传学,还涉及实时成像和计算建模,变得越来越重要。