Suppr超能文献

G 蛋白信号转导激活因子 4 和 Galphai 的受体调节相互作用。

Receptor-regulated interaction of activator of G-protein signaling-4 and Galphai.

机构信息

From the Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

J Biol Chem. 2010 Jul 2;285(27):20588-94. doi: 10.1074/jbc.C109.088070. Epub 2010 May 7.

Abstract

Activator of G-protein signaling-4 (AGS4), via its three G-protein regulatory motifs, is well positioned to modulate G-protein signal processing by virtue of its ability to bind Galpha(i)-GDP subunits free of Gbetagamma. Apart from initial observations on the biochemical activity of the G-protein regulatory motifs of AGS4, very little is known about the nature of the AGS4-G-protein interaction, how this interaction is regulated, or where the interaction takes place. As an initial approach to these questions, we evaluated the interaction of AGS4 with Galpha(i1) in living cells using bioluminescence resonance energy transfer (BRET). AGS4 and Galpha(i1) reciprocally tagged with either Renilla luciferase (RLuc) or yellow fluorescent protein (YFP) demonstrated saturable, specific BRET signals. BRET signals observed between AGS4-RLuc and Galpha(i1)-YFP were reduced by G-protein-coupled receptor activation, and this agonist-induced reduction in BRET was blocked by pertussis toxin. In addition, specific BRET signals were observed for AGS4-RLuc and alpha(2)-adrenergic receptor-Venus, which were Galpha(i)-dependent and reduced by agonist, indicating that AGS4-Galpha(i) complexes are receptor-proximal. These data suggest that AGS4-Galpha(i) complexes directly couple to a G-protein-coupled receptor and may serve as substrates for agonist-induced G-protein activation.

摘要

G 蛋白信号转导激活因子 4(AGS4)通过其三个 G 蛋白调节基序,能够结合无 Gβγ的 Galpha(i)-GDP 亚基,从而很好地调节 G 蛋白信号处理。除了对 AGS4 的 G 蛋白调节基序的生化活性的初步观察外,对于 AGS4-G 蛋白相互作用的性质、这种相互作用如何被调节以及相互作用发生的位置知之甚少。作为对这些问题的初步探讨,我们使用生物发光共振能量转移(BRET)评估了 AGS4 与活细胞中的 Galpha(i1)的相互作用。用 Renilla 荧光素酶(RLuc)或黄色荧光蛋白(YFP)分别标记的 AGS4 和 Galpha(i1)表现出可饱和的、特异的 BRET 信号。AGS4-RLuc 和 Galpha(i1)-YFP 之间观察到的 BRET 信号被 G 蛋白偶联受体激活所降低,而这种激动剂诱导的 BRET 降低被百日咳毒素所阻断。此外,AGS4-RLuc 和 alpha(2)-肾上腺素能受体-Venus 之间也观察到特异的 BRET 信号,这是 Galpha(i)-依赖性的,并且被激动剂降低,表明 AGS4-Galpha(i)复合物位于受体近端。这些数据表明,AGS4-Galpha(i)复合物直接与 G 蛋白偶联受体偶联,并且可能作为激动剂诱导的 G 蛋白激活的底物。

相似文献

1
Receptor-regulated interaction of activator of G-protein signaling-4 and Galphai.
J Biol Chem. 2010 Jul 2;285(27):20588-94. doi: 10.1074/jbc.C109.088070. Epub 2010 May 7.
2
Regulation of the G-protein regulatory-Gαi signaling complex by nonreceptor guanine nucleotide exchange factors.
J Biol Chem. 2013 Feb 1;288(5):3003-15. doi: 10.1074/jbc.M112.418467. Epub 2012 Dec 4.
3
Direct Coupling of a Seven-Transmembrane-Span Receptor to a Gαi G-Protein Regulatory Motif Complex.
Mol Pharmacol. 2015 Aug;88(2):231-7. doi: 10.1124/mol.115.097741. Epub 2015 May 13.
5
Regulation of the AGS3·G{alpha}i signaling complex by a seven-transmembrane span receptor.
J Biol Chem. 2010 Oct 29;285(44):33949-58. doi: 10.1074/jbc.M110.138073. Epub 2010 Aug 17.
7
Regulation of Chemokine Signal Integration by Activator of G-Protein Signaling 4 (AGS4).
J Pharmacol Exp Ther. 2017 Mar;360(3):424-433. doi: 10.1124/jpet.116.238436. Epub 2017 Jan 6.
9
Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor.
J Biol Chem. 2006 Feb 24;281(8):4746-53. doi: 10.1074/jbc.M510573200. Epub 2005 Dec 29.

引用本文的文献

6
Regulation of Chemokine Signal Integration by Activator of G-Protein Signaling 4 (AGS4).
J Pharmacol Exp Ther. 2017 Mar;360(3):424-433. doi: 10.1124/jpet.116.238436. Epub 2017 Jan 6.
7
Direct Coupling of a Seven-Transmembrane-Span Receptor to a Gαi G-Protein Regulatory Motif Complex.
Mol Pharmacol. 2015 Aug;88(2):231-7. doi: 10.1124/mol.115.097741. Epub 2015 May 13.
8
Bioluminescence resonance energy transfer to detect protein-protein interactions in live cells.
Methods Mol Biol. 2015;1278:457-65. doi: 10.1007/978-1-4939-2425-7_30.
9
Integration of G protein α (Gα) signaling by the regulator of G protein signaling 14 (RGS14).
J Biol Chem. 2015 Apr 3;290(14):9037-49. doi: 10.1074/jbc.M114.634329. Epub 2015 Feb 9.
10
Localization and expression profile of Group I and II Activators of G-protein Signaling in the kidney.
J Mol Histol. 2015 Apr;46(2):123-36. doi: 10.1007/s10735-014-9605-0. Epub 2014 Dec 23.

本文引用的文献

1
Spindle orientation during asymmetric cell division.
Nat Cell Biol. 2009 Apr;11(4):365-74. doi: 10.1038/ncb0409-365.
3
Nucleus accumbens AGS3 expression drives ethanol seeking through G betagamma.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12533-8. doi: 10.1073/pnas.0706999105. Epub 2008 Aug 21.
4
Activator of G protein signaling 3 null mice: I. Unexpected alterations in metabolic and cardiovascular function.
Endocrinology. 2008 Aug;149(8):3842-9. doi: 10.1210/en.2008-0050. Epub 2008 May 1.
5
A specific role of AGS3 in the surface expression of plasma membrane proteins.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18103-8. doi: 10.1073/pnas.0709282104. Epub 2007 Nov 8.
6
Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling.
Pharmacol Ther. 2007 Mar;113(3):488-506. doi: 10.1016/j.pharmthera.2006.11.001. Epub 2006 Nov 28.
7
Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes.
Nat Struct Mol Biol. 2006 Sep;13(9):778-86. doi: 10.1038/nsmb1134. Epub 2006 Aug 13.
9
Adenosine A2a blockade prevents synergy between mu-opiate and cannabinoid CB1 receptors and eliminates heroin-seeking behavior in addicted rats.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7877-82. doi: 10.1073/pnas.0602661103. Epub 2006 May 9.
10
mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis.
Br J Pharmacol. 2006 Jun;148(4):387-95. doi: 10.1038/sj.bjp.0706757. Epub 2006 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验