Suppr超能文献

辅酶 A 依赖的苯甲酸盐有氧代谢通过环氧化物形成。

Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation.

机构信息

Lehrstuhl Mikrobiologie, Fakultät Biologie, Schänzlestrasse 1, Universität Freiburg, D-79104 Freiburg, Germany.

出版信息

J Biol Chem. 2010 Jul 2;285(27):20615-24. doi: 10.1074/jbc.M110.124156. Epub 2010 May 7.

Abstract

In the aerobic metabolism of aromatic substrates, oxygenases use molecular oxygen to hydroxylate and finally cleave the aromatic ring. In the case of the common intermediate benzoate, the ring cleavage substrates are either catechol (in bacteria) or 3,4-dihydroxybenzoate (protocatechuate, mainly in fungi). We have shown before that many bacteria, e.g. Azoarcus evansii, the organism studied here, use a completely different mechanism. This elaborate pathway requires formation of benzoyl-CoA, followed by an oxygenase reaction and a nonoxygenolytic ring cleavage. Benzoyl-CoA transformation is catalyzed by the iron-containing benzoyl-CoA oxygenase (BoxB) in conjunction with an FAD and iron-sulfur centers containing reductase (BoxA), which donates electrons from NADPH. Here we show that benzoyl-CoA oxygenase actually does not form the 2,3-dihydrodiol of benzoyl-CoA, as formerly postulated, but the 2,3-epoxide. An enoyl-CoA hydratase (BoxC) uses two molecules of water to first hydrolytically open the ring of 2,3-epoxybenzoyl-CoA, which may proceed via its tautomeric seven-membered oxepin ring form. Then ring C2 is hydrolyzed off as formic acid, yielding 3,4-dehydroadipyl-CoA semialdehyde. The semialdehyde is oxidized by a NADP(+)-dependent aldehyde dehydrogenase (BoxD) to 3,4-dehydroadipyl-CoA. Final products of the pathway are formic acid, acetyl-CoA, and succinyl-CoA. This overlooked pathway occurs in 4-5% of all bacteria whose genomes have been sequenced and represents an elegant strategy to cope with the high resonance energy of aromatic substrates by forming a nonaromatic epoxide.

摘要

在芳香族底物的需氧代谢中,加氧酶利用分子氧将芳香环羟化,最终裂解。对于常见的中间产物苯甲酸,裂解的底物要么是儿茶酚(在细菌中),要么是 3,4-二羟基苯甲酸(原儿茶酸,主要在真菌中)。我们之前已经表明,许多细菌,例如这里研究的 Azoarcus evansii,使用完全不同的机制。这个复杂的途径需要形成苯甲酰辅酶 A,然后进行加氧酶反应和非氧裂解。苯甲酰辅酶 A 的转化由含铁的苯甲酰辅酶 A 加氧酶(BoxB)与含有黄素腺嘌呤二核苷酸(NADPH)的 FAD 和铁硫中心的还原酶(BoxA)共同催化。在这里,我们表明苯甲酰辅酶 A 加氧酶实际上并没有像以前假设的那样形成苯甲酰辅酶 A 的 2,3-二氢二醇,而是形成 2,3-环氧化物。烯酰辅酶 A 水合酶(BoxC)使用两个水分子首先水解打开 2,3-环氧苯甲酰辅酶 A 的环,这可能通过其互变异构的七元氧杂环庚烷形式进行。然后环 C2 作为甲酸水解掉,生成 3,4-脱氢己二酰辅酶 A 半醛。半醛被 NADP(+)依赖的醛脱氢酶(BoxD)氧化为 3,4-脱氢己二酰辅酶 A。该途径的最终产物是甲酸、乙酰辅酶 A 和琥珀酰辅酶 A。这种被忽视的途径存在于已测序的所有细菌的 4-5%中,代表了一种通过形成非芳香族环氧化物来应对芳香族底物高共振能的优雅策略。

相似文献

1
Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation.
J Biol Chem. 2010 Jul 2;285(27):20615-24. doi: 10.1074/jbc.M110.124156. Epub 2010 May 7.
2
New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii.
Mol Microbiol. 2004 Oct;54(1):223-38. doi: 10.1111/j.1365-2958.2004.04263.x.
3
Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii: studies on the non-oxygenolytic ring cleavage enzyme.
Mol Microbiol. 2005 Jun;56(6):1586-600. doi: 10.1111/j.1365-2958.2005.04637.x.
5
Reinvestigation of a new type of aerobic benzoate metabolism in the proteobacterium Azoarcus evansii.
J Bacteriol. 2001 Mar;183(6):1899-908. doi: 10.1128/JB.183.6.1899-1908.2001.
6
A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus.
J Biol Chem. 2001 Jul 6;276(27):24997-5004. doi: 10.1074/jbc.M100291200. Epub 2001 Apr 16.
7
Structure and mechanism of the diiron benzoyl-coenzyme A epoxidase BoxB.
J Biol Chem. 2011 Aug 19;286(33):29241-29248. doi: 10.1074/jbc.M111.236893. Epub 2011 Jun 1.
8
Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii.
J Bacteriol. 2002 Nov;184(22):6301-15. doi: 10.1128/JB.184.22.6301-6315.2002.
10
Benzoyl-coenzyme A thioesterase of Azoarcus evansii: properties and function.
Arch Microbiol. 2008 Oct;190(4):451-60. doi: 10.1007/s00203-008-0393-3. Epub 2008 Jun 10.

引用本文的文献

1
Metagenomic analyses of a consortium for the bioremediation of hydrocarbons polluted soils.
AMB Express. 2024 Sep 28;14(1):105. doi: 10.1186/s13568-024-01764-7.
2
Enzymatic reactions towards aldehydes: An overview.
Flavour Fragr J. 2023 Jul;38(4):221-242. doi: 10.1002/ffj.3739. Epub 2023 Apr 10.
5
Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses.
ISME J. 2021 Dec;15(12):3508-3521. doi: 10.1038/s41396-021-01022-9. Epub 2021 Jun 11.
6
An Aerobic Hybrid Phthalate Degradation Pathway via Phthaloyl-Coenzyme A in Denitrifying Bacteria.
Appl Environ Microbiol. 2020 May 19;86(11). doi: 10.1128/AEM.00498-20.
7
Computational Understanding of the Selectivities in Metalloenzymes.
Front Chem. 2018 Dec 21;6:638. doi: 10.3389/fchem.2018.00638. eCollection 2018.
8
Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium sp. ISTKB.
Biotechnol Biofuels. 2018 Jun 5;11:154. doi: 10.1186/s13068-018-1148-2. eCollection 2018.
9
Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations.
Front Microbiol. 2018 Feb 15;9:232. doi: 10.3389/fmicb.2018.00232. eCollection 2018.
10
Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB.
Chem Sci. 2015 May 1;6(5):2754-2764. doi: 10.1039/c5sc00313j. Epub 2015 Mar 2.

本文引用的文献

2
Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134.
FEMS Microbiol Rev. 2008 Aug;32(5):736-94. doi: 10.1111/j.1574-6976.2008.00122.x. Epub 2008 Aug 7.
3
Substrate binding to cytochromes P450.
Anal Bioanal Chem. 2008 Nov;392(6):1019-30. doi: 10.1007/s00216-008-2244-0. Epub 2008 Jul 13.
4
In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6858-63. doi: 10.1073/pnas.0712073105. Epub 2008 May 5.
7
Substrate trafficking and dioxygen activation in bacterial multicomponent monooxygenases.
Acc Chem Res. 2007 Jul;40(7):466-74. doi: 10.1021/ar600040e. Epub 2007 May 23.
8
Determination of epoxides by high-performance liquid chromatography following derivatization with N,N-diethyldithiocarbamate.
Anal Bioanal Chem. 2007 Feb;387(3):1027-32. doi: 10.1007/s00216-006-1003-3. Epub 2007 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验