Lehrstuhl Mikrobiologie, Fakultät Biologie, Schänzlestrasse 1, Universität Freiburg, D-79104 Freiburg, Germany.
J Biol Chem. 2010 Jul 2;285(27):20615-24. doi: 10.1074/jbc.M110.124156. Epub 2010 May 7.
In the aerobic metabolism of aromatic substrates, oxygenases use molecular oxygen to hydroxylate and finally cleave the aromatic ring. In the case of the common intermediate benzoate, the ring cleavage substrates are either catechol (in bacteria) or 3,4-dihydroxybenzoate (protocatechuate, mainly in fungi). We have shown before that many bacteria, e.g. Azoarcus evansii, the organism studied here, use a completely different mechanism. This elaborate pathway requires formation of benzoyl-CoA, followed by an oxygenase reaction and a nonoxygenolytic ring cleavage. Benzoyl-CoA transformation is catalyzed by the iron-containing benzoyl-CoA oxygenase (BoxB) in conjunction with an FAD and iron-sulfur centers containing reductase (BoxA), which donates electrons from NADPH. Here we show that benzoyl-CoA oxygenase actually does not form the 2,3-dihydrodiol of benzoyl-CoA, as formerly postulated, but the 2,3-epoxide. An enoyl-CoA hydratase (BoxC) uses two molecules of water to first hydrolytically open the ring of 2,3-epoxybenzoyl-CoA, which may proceed via its tautomeric seven-membered oxepin ring form. Then ring C2 is hydrolyzed off as formic acid, yielding 3,4-dehydroadipyl-CoA semialdehyde. The semialdehyde is oxidized by a NADP(+)-dependent aldehyde dehydrogenase (BoxD) to 3,4-dehydroadipyl-CoA. Final products of the pathway are formic acid, acetyl-CoA, and succinyl-CoA. This overlooked pathway occurs in 4-5% of all bacteria whose genomes have been sequenced and represents an elegant strategy to cope with the high resonance energy of aromatic substrates by forming a nonaromatic epoxide.
在芳香族底物的需氧代谢中,加氧酶利用分子氧将芳香环羟化,最终裂解。对于常见的中间产物苯甲酸,裂解的底物要么是儿茶酚(在细菌中),要么是 3,4-二羟基苯甲酸(原儿茶酸,主要在真菌中)。我们之前已经表明,许多细菌,例如这里研究的 Azoarcus evansii,使用完全不同的机制。这个复杂的途径需要形成苯甲酰辅酶 A,然后进行加氧酶反应和非氧裂解。苯甲酰辅酶 A 的转化由含铁的苯甲酰辅酶 A 加氧酶(BoxB)与含有黄素腺嘌呤二核苷酸(NADPH)的 FAD 和铁硫中心的还原酶(BoxA)共同催化。在这里,我们表明苯甲酰辅酶 A 加氧酶实际上并没有像以前假设的那样形成苯甲酰辅酶 A 的 2,3-二氢二醇,而是形成 2,3-环氧化物。烯酰辅酶 A 水合酶(BoxC)使用两个水分子首先水解打开 2,3-环氧苯甲酰辅酶 A 的环,这可能通过其互变异构的七元氧杂环庚烷形式进行。然后环 C2 作为甲酸水解掉,生成 3,4-脱氢己二酰辅酶 A 半醛。半醛被 NADP(+)依赖的醛脱氢酶(BoxD)氧化为 3,4-脱氢己二酰辅酶 A。该途径的最终产物是甲酸、乙酰辅酶 A 和琥珀酰辅酶 A。这种被忽视的途径存在于已测序的所有细菌的 4-5%中,代表了一种通过形成非芳香族环氧化物来应对芳香族底物高共振能的优雅策略。