Murray Leslie J, Lippard Stephen J
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Acc Chem Res. 2007 Jul;40(7):466-74. doi: 10.1021/ar600040e. Epub 2007 May 23.
Non-heme carboxylate-bridged diiron centers in the hydroxylase components of the bacterial multicomponent monooxygenases process four substrates during catalysis: electrons, protons, dioxygen, and hydrocarbons. Understanding how protein-protein interactions mediate the transport of these substrates to the diiron center to achieve the selective oxidation of the hydrocarbon is a significant challenge. In this Account, we summarize our current knowledge of these processes with a focus on the methane monooxygenase system. We also describe recent results for the toluene/ o-xylene monooxygenase and phenol hydroxylase systems from Pseudomonas sporium OX1. The observation in these latter systems of a diiron(III) oxygenated intermediate having different Mössbauer parameters from analogous species in other carboxylate-bridged diiron proteins is discussed. The results indicate that the ability of the protein framework to tune the reactivity of the diiron center at structurally similar active sites is substantially more complex than previously recognized.
细菌多组分单加氧酶的羟化酶组分中,非血红素羧酸盐桥联二铁中心在催化过程中处理四种底物:电子、质子、氧气和碳氢化合物。理解蛋白质-蛋白质相互作用如何介导这些底物向二铁中心的传输以实现碳氢化合物的选择性氧化是一项重大挑战。在本综述中,我们总结了目前对这些过程的认识,重点关注甲烷单加氧酶系统。我们还描述了来自芽孢杆菌OX1的甲苯/邻二甲苯单加氧酶和苯酚羟化酶系统的最新结果。讨论了在这些后一种系统中观察到的二铁(III)氧化中间体,其穆斯堡尔参数与其他羧酸盐桥联二铁蛋白中的类似物种不同。结果表明,蛋白质框架在结构相似的活性位点调节二铁中心反应性的能力比以前认识到的要复杂得多。