Suppr超能文献

枯草芽孢杆菌β夹突变体将其在 DNA 复制和错配修复中的作用分离。

Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair.

机构信息

4042 Kraus Natural Science Building, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Bacteriol. 2010 Jul;192(13):3452-63. doi: 10.1128/JB.01435-09. Epub 2010 May 7.

Abstract

The beta clamp is an essential replication sliding clamp required for processive DNA synthesis. The beta clamp is also critical for several additional aspects of DNA metabolism, including DNA mismatch repair (MMR). The dnaN5 allele of Bacillus subtilis encodes a mutant form of beta clamp containing the G73R substitution. Cells with the dnaN5 allele are temperature sensitive for growth due to a defect in DNA replication at 49 degrees C, and they show an increase in mutation frequency caused by a partial defect in MMR at permissive temperatures. We selected for intragenic suppressors of dnaN5 that rescued viability at 49 degrees C to determine if the DNA replication defect could be separated from the MMR defect. We isolated three intragenic suppressors of dnaN5 that restored growth at the nonpermissive temperature while maintaining an increase in mutation frequency. All three dnaN alleles encoded the G73R substitution along with one of three novel missense mutations. The missense mutations isolated were S22P, S181G, and E346K. Of these, S181G and E346K are located near the hydrophobic cleft of the beta clamp, a common site occupied by proteins that bind the beta clamp. Using several methods, we show that the increase in mutation frequency resulting from each dnaN allele is linked to a defect in MMR. Moreover, we found that S181G and E346K allowed growth at elevated temperatures and did not have an appreciable effect on mutation frequency when separated from G73R. Thus, we found that specific residue changes in the B. subtilis beta clamp separate the role of the beta clamp in DNA replication from its role in MMR.

摘要

β 夹是进行性 DNA 合成所必需的复制滑动夹。β 夹对于 DNA 代谢的几个其他方面也很关键,包括 DNA 错配修复 (MMR)。枯草芽孢杆菌的 dnaN5 等位基因编码一种含有 G73R 取代的突变形式的β夹。由于在 49°C 时 DNA 复制缺陷,带有 dnaN5 等位基因的细胞在生长方面对温度敏感,并且在允许温度下由于 MMR 的部分缺陷,它们显示出突变频率增加。我们选择了 dnaN5 的种内抑制物,以确定 DNA 复制缺陷是否可以与 MMR 缺陷分离。我们分离了三个 dnaN5 的种内抑制物,这些抑制物在非允许温度下恢复了生长,同时保持了突变频率的增加。所有三个 dnaN 等位基因都编码了 G73R 取代以及三个新的错义突变之一。分离出的错义突变是 S22P、S181G 和 E346K。其中,S181G 和 E346K 位于β夹的疏水性裂缝附近,这是结合β夹的蛋白质的常见位置。使用几种方法,我们表明每个 dnaN 等位基因导致的突变频率增加与 MMR 缺陷有关。此外,我们发现 S181G 和 E346K 允许在高温下生长,并且当与 G73R 分离时对突变频率没有明显影响。因此,我们发现枯草芽孢杆菌β 夹中的特定残基变化将 β 夹在 DNA 复制中的作用与其在 MMR 中的作用分离。

相似文献

1
Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair.
J Bacteriol. 2010 Jul;192(13):3452-63. doi: 10.1128/JB.01435-09. Epub 2010 May 7.
2
DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication.
Mol Microbiol. 2013 Feb;87(3):553-68. doi: 10.1111/mmi.12115. Epub 2012 Dec 11.
3
Beta clamp directs localization of mismatch repair in Bacillus subtilis.
Mol Cell. 2008 Feb 15;29(3):291-301. doi: 10.1016/j.molcel.2007.10.036.
4
Binding of the regulatory domain of MutL to the sliding β-clamp is species specific.
Nucleic Acids Res. 2019 May 21;47(9):4831-4842. doi: 10.1093/nar/gkz115.
5
Mismatch repair causes the dynamic release of an essential DNA polymerase from the replication fork.
Mol Microbiol. 2011 Nov;82(3):648-63. doi: 10.1111/j.1365-2958.2011.07841.x. Epub 2011 Sep 30.
8
Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis.
J Bacteriol. 2011 Jan;193(1):236-45. doi: 10.1128/JB.00940-10. Epub 2010 Oct 22.
9
Bacillus subtilis RarA acts at the interplay between replication and repair-by-recombination.
DNA Repair (Amst). 2019 Jun;78:27-36. doi: 10.1016/j.dnarep.2019.03.010. Epub 2019 Mar 21.
10
The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair.
J Biol Chem. 2018 Nov 23;293(47):18055-18070. doi: 10.1074/jbc.RA118.005439. Epub 2018 Sep 20.

引用本文的文献

1
Binding of the regulatory domain of MutL to the sliding β-clamp is species specific.
Nucleic Acids Res. 2019 May 21;47(9):4831-4842. doi: 10.1093/nar/gkz115.
2
MutS2 Promotes Homologous Recombination in Bacillus subtilis.
J Bacteriol. 2016 Dec 28;199(2). doi: 10.1128/JB.00682-16. Print 2017 Jan 15.
3
Addressing the Requirements of High-Sensitivity Single-Molecule Imaging of Low-Copy-Number Proteins in Bacteria.
Chemphyschem. 2016 May 18;17(10):1435-40. doi: 10.1002/cphc.201600035. Epub 2016 Feb 29.
4
Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6898-906. doi: 10.1073/pnas.1507386112. Epub 2015 Nov 2.
5
DNA Mismatch Repair.
EcoSal Plus. 2012 Nov;5(1). doi: 10.1128/ecosalplus.7.2.5.
6
RecO and RecR are necessary for RecA loading in response to DNA damage and replication fork stress.
J Bacteriol. 2014 Aug;196(15):2851-60. doi: 10.1128/JB.01494-14. Epub 2014 Jun 2.
7
RecD2 helicase limits replication fork stress in Bacillus subtilis.
J Bacteriol. 2014 Apr;196(7):1359-68. doi: 10.1128/JB.01475-13. Epub 2014 Jan 17.
8
Cost of rNTP/dNTP pool imbalance at the replication fork.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12942-7. doi: 10.1073/pnas.1309506110. Epub 2013 Jul 23.
9
DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication.
Mol Microbiol. 2013 Feb;87(3):553-68. doi: 10.1111/mmi.12115. Epub 2012 Dec 11.
10
DNA repair and genome maintenance in Bacillus subtilis.
Microbiol Mol Biol Rev. 2012 Sep;76(3):530-64. doi: 10.1128/MMBR.05020-11.

本文引用的文献

2
YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress.
Mol Microbiol. 2009 Oct;74(2):454-66. doi: 10.1111/j.1365-2958.2009.06876.x. Epub 2009 Sep 8.
5
A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12664-9. doi: 10.1073/pnas.0903460106. Epub 2009 Jul 16.
6
DnaAcos hyperinitiates by circumventing regulatory pathways that control the frequency of initiation in Escherichia coli.
Mol Microbiol. 2009 Jun;72(6):1348-63. doi: 10.1111/j.1365-2958.2009.06724.x. Epub 2009 Apr 30.
7
Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli.
J Mol Biol. 2009 Mar 20;387(1):74-91. doi: 10.1016/j.jmb.2009.01.050. Epub 2009 Jan 30.
9
Loading clamps for DNA replication and repair.
DNA Repair (Amst). 2009 May 1;8(5):570-8. doi: 10.1016/j.dnarep.2008.12.014. Epub 2009 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验