Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5 Canada.
Biochem Cell Biol. 2010 Apr;88(2):131-42. doi: 10.1139/o09-152.
Biomolecular nuclear magnetic resonance (NMR) spin relaxation experiments provide exquisite information on the picosecond to nanosecond timescale motions of bond vectors. Spin-lattice (T1) and spin-spin (T2) relaxation times and the steady-state nuclear Overhauser effect (NOE) are the first set of parameters extracted from typical 15N or 13C NMR relaxation experiments. Therefore, verifying that T1, T2, and NOE are consistent with theoretical predictions is an important step before carrying out the more detailed model-free and reduced spectral density mapping analyses commonly employed. In this mini-review, we discuss the essential motional parameters used to describe biomolecular dynamics in the context of a variety of examples of folded and intrinsically disordered proteins and peptides in aqueous and membrane mimetic environments. Estimates of these parameters can be used as input for an online interface, introduced herein, allowing plotting of trends of T1, T2, and NOE with magnetic field strength. The plots may serve as a first-check to the spectroscopist preparing to embark on a detailed NMR relaxation analysis.
生物分子核磁共振(NMR)自旋弛豫实验提供了有关键矢量皮秒至纳秒时间尺度运动的精细信息。自旋晶格(T1)和自旋-自旋(T2)弛豫时间以及稳态核奥弗豪瑟效应(NOE)是从典型的 15N 或 13C NMR 弛豫实验中提取的第一组参数。因此,在进行更详细的无模型和降低谱密度映射分析之前,验证 T1、T2 和 NOE 与理论预测一致是一个重要步骤。在这篇小型综述中,我们讨论了用于描述在水相和膜模拟环境中折叠和固有无序蛋白质和肽的各种例子中的生物分子动力学的基本运动参数。这些参数的估计值可用作在线界面的输入,本文引入了该界面,允许绘制 T1、T2 和 NOE 随磁场强度的趋势图。这些图可以作为准备进行详细 NMR 弛豫分析的光谱学家的初步检查。