Suppr超能文献

休眠特异性调节剂 SutA 在铜绿假单胞菌中是无规则卷曲的,并且调节转录起始。

The dormancy-specific regulator, SutA, is intrinsically disordered and modulates transcription initiation in Pseudomonas aeruginosa.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

出版信息

Mol Microbiol. 2019 Sep;112(3):992-1009. doi: 10.1111/mmi.14337. Epub 2019 Jul 10.

Abstract

Though most bacteria in nature are nutritionally limited and grow slowly, our understanding of core processes like transcription comes largely from studies in model organisms doubling rapidly. We previously identified a small protein of unknown function, SutA, in a screen of proteins synthesized in Pseudomonas aeruginosa during dormancy. SutA binds RNA polymerase (RNAP), causing widespread changes in gene expression, including upregulation of the ribosomal RNA genes. Here, using biochemical and structural methods, we examine how SutA interacts with RNAP and the functional consequences of these interactions. We show that SutA comprises a central α-helix with unstructured N- and C-terminal tails, and binds to the β1 domain of RNAP. It activates transcription from the rrn promoter by both the housekeeping sigma factor holoenzyme (Eσ ) and the stress sigma factor holoenzyme (Eσ ) in vitro, but has a greater impact on Eσ . In both cases, SutA appears to affect intermediates in the open complex formation and its N-terminal tail is required for activation. The small magnitudes of in vitro effects are consistent with a role in maintaining activity required for homeostasis during dormancy. Our results add SutA to a growing list of transcription regulators that use their intrinsically disordered regions to remodel transcription complexes.

摘要

尽管自然界中大多数细菌的营养有限,生长缓慢,但我们对转录等核心过程的理解主要来自于对快速倍增的模式生物的研究。我们之前在休眠的铜绿假单胞菌中筛选出一种未知功能的小蛋白 SutA。SutA 与 RNA 聚合酶 (RNAP) 结合,导致基因表达的广泛变化,包括核糖体 RNA 基因的上调。在这里,我们使用生化和结构方法研究了 SutA 与 RNAP 的相互作用以及这些相互作用的功能后果。我们表明 SutA 由一个中央α-螺旋和无规卷曲的 N-和 C-末端尾巴组成,并与 RNAP 的β1 结构域结合。它在体外激活 rrn 启动子的转录,由管家 sigma 因子全酶 (Eσ ) 和应激 sigma 因子全酶 (Eσ ) 激活,但对 Eσ 的影响更大。在这两种情况下,SutA 似乎都影响了开放复合物形成的中间产物,并且其 N-末端尾巴对于激活是必需的。体外效应的幅度较小,这与在休眠期间维持与内稳态相关的活性的作用一致。我们的结果将 SutA 添加到越来越多的使用其固有无序区域重塑转录复合物的转录调节剂列表中。

相似文献

2
Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding.
Nat Commun. 2022 Jul 20;13(1):4204. doi: 10.1038/s41467-022-31871-7.
3
Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa.
J Bacteriol. 2000 Mar;182(6):1481-91. doi: 10.1128/JB.182.6.1481-1491.2000.
5
In vitro transcription analysis of rpoD in Pseudomonas aeruginosa PAO1.
FEMS Microbiol Lett. 1999 Nov 15;180(2):311-6. doi: 10.1111/j.1574-6968.1999.tb08811.x.
7
Structural basis for transcription activation by Crl through tethering of σ and RNA polymerase.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.
8
SutA is a bacterial transcription factor expressed during slow growth in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E597-605. doi: 10.1073/pnas.1514412113. Epub 2016 Jan 19.
9
Holoenzyme switching and stochastic release of sigma factors from RNA polymerase in vivo.
Mol Cell. 2005 Nov 11;20(3):357-66. doi: 10.1016/j.molcel.2005.10.011.
10
Sigma and RNA polymerase: an on-again, off-again relationship?
Mol Cell. 2005 Nov 11;20(3):335-45. doi: 10.1016/j.molcel.2005.10.015.

引用本文的文献

1
Microbial life in slow and stopped lanes.
Trends Microbiol. 2024 Jul;32(7):650-662. doi: 10.1016/j.tim.2023.11.014. Epub 2023 Dec 19.
4
Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding.
Nat Commun. 2022 Jul 20;13(1):4204. doi: 10.1038/s41467-022-31871-7.
5
Bacterial transcription during growth arrest.
Transcription. 2021 Aug;12(4):232-249. doi: 10.1080/21541264.2021.1968761. Epub 2021 Sep 6.
6
Diverse and unified mechanisms of transcription initiation in bacteria.
Nat Rev Microbiol. 2021 Feb;19(2):95-109. doi: 10.1038/s41579-020-00450-2. Epub 2020 Oct 29.
7
Heat-shock proteases promote survival of during growth arrest.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4358-4367. doi: 10.1073/pnas.1912082117. Epub 2020 Feb 6.
8
Transcription of Bacterial Chromatin.
J Mol Biol. 2019 Sep 20;431(20):4040-4066. doi: 10.1016/j.jmb.2019.05.041. Epub 2019 May 31.

本文引用的文献

2
Structural Basis for the Action of an All-Purpose Transcription Anti-termination Factor.
Mol Cell. 2019 Apr 4;74(1):143-157.e5. doi: 10.1016/j.molcel.2019.01.016. Epub 2019 Feb 19.
3
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding.
Nature. 2019 Jan;565(7739):382-385. doi: 10.1038/s41586-018-0840-5. Epub 2019 Jan 9.
4
The calculation of transcript flux ratios reveals single regulatory mechanisms capable of activation and repression.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11604-E11613. doi: 10.1073/pnas.1809454115. Epub 2018 Nov 21.
6
Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.
Cell Rep. 2018 Mar 20;22(12):3251-3264. doi: 10.1016/j.celrep.2018.02.097.
7
A High-Throughput Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation Domain.
Cell Syst. 2018 Apr 25;6(4):444-455.e6. doi: 10.1016/j.cels.2018.01.015. Epub 2018 Mar 7.
9
Selective Proteomic Analysis of Antibiotic-Tolerant Cellular Subpopulations in Biofilms.
mBio. 2017 Oct 24;8(5):e01593-17. doi: 10.1128/mBio.01593-17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验