Suppr超能文献

掩码字段:一种用于学习、识别和预测模式数据多个分组的大规模并行神经架构。

Masking fields: a massively parallel neural architecture for learning, recognizing, and predicting multiple groupings of patterned data.

作者信息

Cohen M A, Grossberg S

出版信息

Appl Opt. 1987 May 15;26(10):1866-91. doi: 10.1364/AO.26.001866.

Abstract

A massively parallel neural network architecture, called a masking field, is characterized through systematic computer simulations. A masking field is a multiple-scale self-similar automatically gain-controlled cooperative- competitive feedback network F(2). Network F(2) receives input patterns from an adaptive filter F(1) ? F(2) that is activated by a prior processing level F(1). Such a network F(2) behaves like a content-addressable memory. It activates compressed recognition codes that are predictive with respect to the activation patterns flickering across the feature detectors of F(1) and competitively inhibits, or masks, codes which are unpredictive with respect to the F(1) patterns. In particular, a masking field can simultaneously detect multiple groupings within its input patterns and assign activation weights to the codes for these groupings which are predictive with respect to the contextual information embedded within the patterns and the prior learning of the system. A masking field automatically rescales its sensitivity as the overall size of an input pattern changes, yet also remains sensitive to the microstructure within each input pattern. In this way, a masking field can more strongly activate a code for the whole F(1) pattern than for its salient parts, yet amplifies the code for a pattern part when it becomes a pattern whole in a new input context. A masking field can also be primed by inputs from F(1): it can activate codes which represent predictions of how the F(1) pattern may evolve in the subsequent time interval. Network F(2) can also exhibit an adaptive sharpening property: repetition of a familiar F(1) pattern can tune the adaptive filter to elicit a more focal spatial activation of its F(2) recognition code than does an unfamiliar input pattern. The F(2) recognition code also becomes less distributed when an input pattern contains more contextual information on which to base an unambiguous prediction of which the F(1) pattern is being processed. Thus a masking field suggests a solution of the credit assignment problem by embodying a real-time code for the predictive evidence contained within its input patterns. Such capabilities are useful in speech recognition, visual object recognition, and cognitive information processing. An absolutely stable design for a masking field is disclosed through an analysis of the computer simulations. This design suggests how associative mechanisms, cooperative-competitive interactions, and modulatory gating signals can be joined together to regulate the learning of compressed recognition codes. Data about the neural substrates of learning and memory are compared to these mechanisms.

摘要

一种名为掩蔽场的大规模并行神经网络架构,通过系统的计算机模拟进行了表征。掩蔽场是一种多尺度自相似的自动增益控制协同竞争反馈网络F(2)。网络F(2)从自适应滤波器F(1)接收输入模式,F(1)由前一个处理层F(1)激活。这样的网络F(2)表现得像一个内容可寻址存储器。它激活对F(1)的特征探测器上闪烁的激活模式具有预测性的压缩识别码,并竞争性地抑制或掩蔽对F(1)模式不可预测的码。特别地,掩蔽场可以同时检测其输入模式中的多个分组,并为这些分组的码分配激活权重,这些权重对于模式中嵌入的上下文信息和系统的先前学习具有预测性。当输入模式的整体大小发生变化时,掩蔽场会自动重新调整其灵敏度,但同时也对每个输入模式中的微观结构保持敏感。通过这种方式,掩蔽场对整个F(1)模式的码的激活可能比对其显著部分的激活更强,但当一个模式部分在新的输入上下文中成为一个模式整体时,会放大该模式部分的码。掩蔽场也可以由F(1)的输入进行启动:它可以激活代表F(1)模式在后续时间间隔内可能如何演变的预测的码。网络F(2)还可以表现出自适应锐化特性:重复熟悉的F(1)模式可以调整自适应滤波器,以使其F(2)识别码产生比不熟悉的输入模式更集中的空间激活。当输入模式包含更多上下文信息,从而能够对正在处理的F(1)模式进行明确预测时,F(2)识别码的分布也会减少。因此,掩蔽场通过为其输入模式中包含的预测证据体现实时码,提出了一种解决信用分配问题的方法。这种能力在语音识别、视觉对象识别和认知信息处理中很有用。通过对计算机模拟的分析,公开了一种掩蔽场的绝对稳定设计。该设计表明了联想机制、协同竞争相互作用和调制门控信号如何结合在一起,以调节压缩识别码的学习。将关于学习和记忆的神经基质的数据与这些机制进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验