Department of Physiology & Pathophysiology, University of Witten/Herdecke, D-58453 Witten, Germany.
Curr Mol Med. 2010 Jun;10(4):387-404. doi: 10.2174/156652410791316986.
Wnt/beta-catenin signaling plays a crucial role during embryogenesis. However, this signaling pathway also plays a role in normal adult tissues and in carcinogenesis, including cadmium (Cd2+) induced nephrocarcinogenesis, which is the topic of this review. Wnt/beta-catenin signaling is tightly regulated in mature epithelia to balance cell proliferation, differentiation and death. This is accomplished by modulating phosphorylation of the multifunctional protein beta-catenin which in turn determines its preference for a particular fate, i.e. cell-cell adhesion by binding to E-cadherin, proteasomal degradation, or co-activation of the transcription factor Tcf/Lef. The pivotal role of beta-catenin is not limited to Wnt signaling, but can be challenged by other transcription factors under stress conditions (e.g. FOXO, HIF-1alpha, NF-kappaB, c-jun), where beta-catenin acts as a molecular switch in response to the cellular redox status. Aberrant Wnt/beta-catenin signaling can contribute to carcinogenesis of intestinal, lung or kidney epithelia, either by mutations of its signaling components and/or disruption of linked signaling networks. The nephrotoxic metal Cd2+ causes renal cancer in humans. Because it is not genotoxic Cd2+ is thought to induce mutations and carcinomas indirectly: Possible mechanisms include oxidative stress, inhibition of DNA repair, aberrant gene expression, deregulation of cell proliferation, resistance to apoptosis, and/or disruption of cell adhesion. Wnt signaling may contribute to Cd2+ carcinogenesis because Cd2+ disrupts the junctional E-cadherin/beta-catenin complex, resulting in excessive nuclear translocation of beta-catenin and activation of Tcf4. Up-regulation of target genes of the beta-catenin/Tcf4 complex, such as c-myc, cyclin D1 and the multidrug transporter P-glycoprotein (MDR1/ABCB1), leads to increased proliferation, evasion of apoptosis, adaptation to Cd2+ toxicity and thereby promotes the selection of mutated and pre-neoplastic cells.
Wnt/β-catenin 信号通路在胚胎发生过程中发挥着至关重要的作用。然而,该信号通路在正常成人组织和癌发生中也发挥着作用,包括镉(Cd2+)诱导的肾肿瘤发生,这是本综述的主题。Wnt/β-catenin 信号通路在成熟上皮组织中受到严格调控,以平衡细胞增殖、分化和死亡。这是通过调节多功能蛋白β-catenin 的磷酸化来实现的,β-catenin 的磷酸化决定了其特定命运的偏好,即通过与 E-钙黏蛋白结合进行细胞-细胞黏附、蛋白酶体降解,或与转录因子 Tcf/Lef 共同激活。β-catenin 的关键作用不仅限于 Wnt 信号通路,还可以受到应激条件下其他转录因子的挑战(例如 FOXO、HIF-1α、NF-κB、c-jun),在这些条件下,β-catenin 作为分子开关,根据细胞的氧化还原状态做出反应。异常的 Wnt/β-catenin 信号通路可能导致肠道、肺部或肾脏上皮细胞的癌变,其原因要么是信号通路成分的突变,要么是相关信号网络的破坏。肾毒性金属 Cd2+ 可导致人类肾癌。由于 Cd2+ 没有遗传毒性,因此人们认为它是通过间接方式诱导突变和癌:可能的机制包括氧化应激、DNA 修复抑制、异常基因表达、细胞增殖失控、抗凋亡和/或细胞黏附破坏。Wnt 信号通路可能参与 Cd2+ 致癌作用,因为 Cd2+ 破坏了连接的 E-钙黏蛋白/β-catenin 复合物,导致β-catenin 过度核转位和 Tcf4 的激活。β-catenin/Tcf4 复合物靶基因的上调,如 c-myc、cyclin D1 和多药转运蛋白 P-糖蛋白(MDR1/ABCB1),导致增殖增加、逃避凋亡、适应 Cd2+ 毒性,从而促进突变和前肿瘤细胞的选择。