Suppr超能文献

V1 周边抑制在 MT 运动整合中的作用。

The role of V1 surround suppression in MT motion integration.

机构信息

McGill University, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.

出版信息

J Neurophysiol. 2010 Jun;103(6):3123-38. doi: 10.1152/jn.00654.2009. Epub 2010 Mar 24.

Abstract

Neurons in the primate extrastriate cortex are highly selective for complex stimulus features such as faces, objects, and motion patterns. One explanation for this selectivity is that neurons in these areas carry out sophisticated computations on the outputs of lower-level areas such as primary visual cortex (V1), where neuronal selectivity is often modeled in terms of linear spatiotemporal filters. However, it has long been known that such simple V1 models are incomplete because they fail to capture important nonlinearities that can substantially alter neuronal selectivity for specific stimulus features. Thus a key step in understanding the function of higher cortical areas is the development of realistic models of their V1 inputs. We have addressed this issue by constructing a computational model of the V1 neurons that provide the strongest input to extrastriate cortical middle temporal (MT) area. We find that a modest elaboration to the standard model of V1 direction selectivity generates model neurons with strong end-stopping, a property that is also found in the V1 layers that provide input to MT. With this computational feature in place, the seemingly complex properties of MT neurons can be simulated by assuming that they perform a simple nonlinear summation of their inputs. The resulting model, which has a very small number of free parameters, can simulate many of the diverse properties of MT neurons. In particular, we simulate the invariance of MT tuning curves to the orientation and length of tilted bar stimuli, as well as the accompanying temporal dynamics. We also show how this property relates to the continuum from component to pattern selectivity observed when MT neurons are tested with plaids. Finally, we confirm several key predictions of the model by recording from MT neurons in the alert macaque monkey. Overall our results demonstrate that many of the seemingly complex computations carried out by high-level cortical neurons can in principle be understood by examining the properties of their inputs.

摘要

灵长类动物外纹状皮层中的神经元对复杂刺激特征(如人脸、物体和运动模式)具有高度选择性。这种选择性的一种解释是,这些区域中的神经元对初级视觉皮层 (V1) 等低级区域的输出进行了复杂的计算,而神经元的选择性通常以线性时空滤波器来建模。然而,长期以来人们一直知道,这种简单的 V1 模型是不完整的,因为它们未能捕捉到重要的非线性,这些非线性可以极大地改变神经元对特定刺激特征的选择性。因此,理解高级皮层区域功能的关键步骤是开发其 V1 输入的现实模型。我们通过构建一个为外纹状皮层中的中颞(MT)区提供最强输入的 V1 神经元的计算模型来解决这个问题。我们发现,对 V1 方向选择性的标准模型进行适度的改进,可以生成具有强烈端抑制特性的模型神经元,这种特性也存在于为 MT 提供输入的 V1 层中。有了这个计算特征,只需假设它们对输入进行简单的非线性求和,就可以模拟 MT 神经元看似复杂的特性。这个模型具有非常少的自由参数,可以模拟 MT 神经元的许多不同特性。特别是,我们模拟了 MT 调谐曲线对倾斜棒刺激的方向和长度的不变性,以及伴随的时间动态。我们还展示了这种特性如何与当 MT 神经元用光栅进行测试时观察到的从成分选择性到模式选择性的连续体相关。最后,我们通过在警觉的猕猴中记录 MT 神经元来验证模型的几个关键预测。总的来说,我们的结果表明,许多高级皮层神经元进行的看似复杂的计算原则上可以通过检查其输入的特性来理解。

相似文献

1
The role of V1 surround suppression in MT motion integration.
J Neurophysiol. 2010 Jun;103(6):3123-38. doi: 10.1152/jn.00654.2009. Epub 2010 Mar 24.
2
Direction and orientation selectivity of neurons in visual area MT of the macaque.
J Neurophysiol. 1984 Dec;52(6):1106-30. doi: 10.1152/jn.1984.52.6.1106.
3
Diverse suppressive influences in area MT and selectivity to complex motion features.
J Neurosci. 2013 Oct 16;33(42):16715-28. doi: 10.1523/JNEUROSCI.0203-13.2013.
4
Properties of pattern and component direction-selective cells in area MT of the macaque.
J Neurophysiol. 2016 Jun 1;115(6):2705-20. doi: 10.1152/jn.00639.2014. Epub 2015 Nov 11.
5
Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions.
Neuropsychologia. 2003;41(13):1738-56. doi: 10.1016/s0028-3932(03)00176-3.
6
Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex.
J Neurosci. 2009 Oct 28;29(43):13702-9. doi: 10.1523/JNEUROSCI.2844-09.2009.
7
Compound Stimuli Reveal the Structure of Visual Motion Selectivity in Macaque MT Neurons.
eNeuro. 2019 Nov 15;6(6). doi: 10.1523/ENEURO.0258-19.2019. Print 2019 Nov/Dec.
8
Pattern Motion Processing by MT Neurons.
Front Neural Circuits. 2019 Jun 21;13:43. doi: 10.3389/fncir.2019.00043. eCollection 2019.
9
A Model of Binocular Motion Integration in MT Neurons.
J Neurosci. 2016 Jun 15;36(24):6563-82. doi: 10.1523/JNEUROSCI.3213-15.2016.
10
A visual motion sensor based on the properties of V1 and MT neurons.
Vision Res. 2004;44(15):1733-55. doi: 10.1016/j.visres.2004.03.003.

引用本文的文献

1
Balancing prior knowledge and sensory data in a predictive coding model of coherent motion detection.
PLoS Comput Biol. 2025 May 21;21(5):e1013116. doi: 10.1371/journal.pcbi.1013116. eCollection 2025 May.
4
A neural correlate of perceptual segmentation in macaque middle temporal cortical area.
Nat Commun. 2022 Aug 24;13(1):4967. doi: 10.1038/s41467-022-32555-y.
6
Adaptive Surround Modulation of MT Neurons: A Computational Model.
Front Neural Circuits. 2020 Oct 26;14:529345. doi: 10.3389/fncir.2020.529345. eCollection 2020.
7
Pattern Motion Processing by MT Neurons.
Front Neural Circuits. 2019 Jun 21;13:43. doi: 10.3389/fncir.2019.00043. eCollection 2019.
8
Ferrets as a Model for Higher-Level Visual Motion Processing.
Curr Biol. 2019 Jan 21;29(2):179-191.e5. doi: 10.1016/j.cub.2018.11.017. Epub 2018 Dec 27.
9
A Neurodynamic Model of Feature-Based Spatial Selection.
Front Psychol. 2018 Mar 28;9:417. doi: 10.3389/fpsyg.2018.00417. eCollection 2018.
10
A Unifying Motif for Spatial and Directional Surround Suppression.
J Neurosci. 2018 Jan 24;38(4):989-999. doi: 10.1523/JNEUROSCI.2386-17.2017. Epub 2017 Dec 11.

本文引用的文献

1
Velocity computation in the primate visual system.
Nat Rev Neurosci. 2008 Sep;9(9):686-95. doi: 10.1038/nrn2472.
2
A model of V4 shape selectivity and invariance.
J Neurophysiol. 2007 Sep;98(3):1733-50. doi: 10.1152/jn.01265.2006. Epub 2007 Jun 27.
3
The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex.
Neuron. 2007 Apr 5;54(1):137-52. doi: 10.1016/j.neuron.2007.02.029.
4
How MT cells analyze the motion of visual patterns.
Nat Neurosci. 2006 Nov;9(11):1421-31. doi: 10.1038/nn1786. Epub 2006 Oct 15.
6
Spatiotemporal structure of nonlinear subunits in macaque visual cortex.
J Neurosci. 2006 Jan 18;26(3):893-907. doi: 10.1523/JNEUROSCI.3226-05.2006.
7
Dynamic shape synthesis in posterior inferotemporal cortex.
Neuron. 2006 Jan 5;49(1):17-24. doi: 10.1016/j.neuron.2005.11.026.
8
Temporal evolution of 2-dimensional direction signals used to guide eye movements.
J Neurophysiol. 2006 Jan;95(1):284-300. doi: 10.1152/jn.01329.2004.
9
Dynamics of directional selectivity in MT receptive field centre and surround.
Eur J Neurosci. 2005 Oct;22(8):2049-58. doi: 10.1111/j.1460-9568.2005.04363.x.
10
Structure and function of visual area MT.
Annu Rev Neurosci. 2005;28:157-89. doi: 10.1146/annurev.neuro.26.041002.131052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验