Suppr超能文献

斑块大小和数量对简单斑块胶体模型的影响。

Effects of patch size and number within a simple model of patchy colloids.

机构信息

Dipartimento di Chimica Fisica, Università Ca' Foscari Venezia, Calle Larga S. Marta DD2137, Venezia I-30123, Italy.

出版信息

J Chem Phys. 2010 May 7;132(17):174110. doi: 10.1063/1.3415490.

Abstract

We report on a computer simulation and integral equation study of a simple model of patchy spheres, each of whose surfaces is decorated with two opposite attractive caps, as a function of the fraction chi of covered attractive surface. The simple model explored--the two-patch Kern-Frenkel model--interpolates between a square-well and a hard-sphere potential on changing the coverage chi. We show that integral equation theory provides quantitative predictions in the entire explored region of temperatures and densities from the square-well limit chi=1.0 down to chi approximately 0.6. For smaller chi, good numerical convergence of the equations is achieved only at temperatures larger than the gas-liquid critical point, where integral equation theory provides a complete description of the angular dependence. These results are contrasted with those for the one-patch case. We investigate the remaining region of coverage via numerical simulation and show how the gas-liquid critical point moves to smaller densities and temperatures on decreasing chi. Below chi approximately 0.3, crystallization prevents the possibility of observing the evolution of the line of critical points, providing the angular analog of the disappearance of the liquid as an equilibrium phase on decreasing the range for spherical potentials. Finally, we show that the stable ordered phase evolves on decreasing chi from a three-dimensional crystal of interconnected planes to a two-dimensional independent-planes structure to a one-dimensional fluid of chains when the one-bond-per-patch limit is eventually reached.

摘要

我们报告了一个简单的带有补丁的球体模型的计算机模拟和积分方程研究,每个球体的表面都装饰有两个相反的有吸引力的盖子,作为覆盖有吸引力的表面的分数 chi 的函数。所探索的简单模型——两补丁 Kern-Frenkel 模型——在改变覆盖率 chi 时,在方阱和硬球势之间进行插值。我们表明,积分方程理论在从方阱极限 chi=1.0 到 chi 约 0.6 的整个温度和密度探索区域提供了定量预测。对于更小的 chi,只有在温度高于气液临界点时,方程才能很好地收敛数值,在临界点处,积分方程理论提供了角依赖性的完整描述。这些结果与一补丁情况的结果形成对比。我们通过数值模拟研究了剩余的覆盖率区域,并展示了随着 chi 的减小,气液临界点如何向更小的密度和温度移动。在 chi 约 0.3 以下,结晶阻止了观察临界点线演化的可能性,为球形势的范围减小时液体作为平衡相的消失提供了角上的类似物。最后,我们表明,随着 chi 的减小,从相互连接的平面的三维晶体到二维独立平面结构再到一维链状流体,稳定的有序相演化,当最终达到一补丁一键的极限时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验