Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, MI 48201, USA.
Curr Med Chem. 2010;17(21):2292-300. doi: 10.2174/092986710791331059.
Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.
抗菌药物耐药性不断发展,给医院内和社区获得性感染的治疗带来严重挑战。耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素金黄色葡萄球菌(VRSA)和耐万古霉素肠球菌(VRE)等耐药菌株的出现表明,抗菌药物耐药性是抗菌药物使用所带来的不可避免的进化反应。这突出表明,迫切需要针对新细菌靶标的抗生素。针对细菌膜完整性的药物在临床武器库中相对较新。达托霉素是一种脂肽,是膜结合抗生素的经典范例。自然界也利用了这一策略。抗菌肽(AMPs)存在于所有生物界,主要通过破坏细菌膜的完整性来发挥作用。与现有抗生素相比,AMPs 具有几个优势,包括广谱活性、快速杀菌活性、与现有抗生素无交叉耐药性以及产生耐药性的可能性低。目前,已经开发出少数几种肽用于临床应用,但由于生物利用度差和制造成本高,治疗应用受到限制。然而,它们广泛的特异性、强大的活性和较低的耐药可能性促使人们寻找合成的抗菌肽模拟物作为膜活性抗生素。在这篇综述中,我们将讨论自 2004 年以来发表的不同类别的合成膜结合抗生素。