Research School of Chemistry, Australian National University, Australian Capital Territory 0200, Australia.
Biochem J. 2010 Jul 15;429(2):313-21. doi: 10.1042/BJ20100233.
The metal ion co-ordination sites of many metalloproteins have been characterized by a variety of spectroscopic techniques and small-molecule model systems, revealing many important insights into the structural determinants of metal ion co-ordination. However, our understanding of this fundamentally and practically important phenomenon remains frustratingly simplistic; in many proteins it is essentially impossible to predict metal ion specificity and the effects of remote 'outer-shell' residues on metal ion co-ordination strength are also poorly defined. This is exemplified by our inability to explain why metalloenzymes with identical metal ion co-ordination spheres, such as the closely related orthologues of bacterial PTE (phosphotriesterase) from Agrobacterium radiobacter and Pseudomonas diminuta, display different metal ion specificity and co-ordination strength. In the present study, we present a series of PTE variants that all possess identical metal ion co-ordination spheres, yet display large differences in their metal ion co-ordination strength. Using measurement of the rates of metal ion dissociation from the active site alongside analysis of structural data obtained through X-ray crystallography, we show that 'outer-shell' residues provide essential support for the metal ion ligands, in effect buttressing them in their optimal orientation. Remote mutations appear to modulate metal ion interactions by increasing or decreasing the stabilizing effects of these networks. The present study therefore provides a description of how the greater protein fold can be modified to 'tune' the strength of metal ion co-ordination and metal ion specificity, as well as reinforcing the concept of proteins as ensembles of conformational states with unique structures and biochemical properties.
许多金属蛋白的金属离子配位位点已经通过各种光谱技术和小分子模型系统进行了表征,这为我们深入了解金属离子配位的结构决定因素提供了许多重要的见解。然而,我们对这一基本且重要的现象的理解仍然令人沮丧地简单化;在许多蛋白质中,基本上不可能预测金属离子的特异性,而且远程“外壳”残基对金属离子配位强度的影响也定义不明确。这方面的一个例子是,我们无法解释为什么具有相同金属离子配位球的金属酶,例如来自根瘤农杆菌和小假单胞菌的密切相关的细菌 PTE(磷酸三酯酶)的同源物,表现出不同的金属离子特异性和配位强度。在本研究中,我们提出了一系列 PTE 变体,它们都具有相同的金属离子配位球,但在金属离子配位强度方面显示出很大的差异。通过测量从活性位点解离金属离子的速率以及通过 X 射线晶体学获得的结构数据的分析,我们表明“外壳”残基为金属离子配体提供了必要的支持,实际上将它们支撑在最佳取向。远程突变似乎通过增加或减少这些网络的稳定作用来调节金属离子相互作用。因此,本研究描述了如何通过修饰更大的蛋白质折叠来“调整”金属离子配位和金属离子特异性的强度,同时也加强了蛋白质作为具有独特结构和生化特性的构象状态集合的概念。