Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
Development. 2010 Jun;137(11):1887-96. doi: 10.1242/dev.050526.
Discovering the genetic and cellular mechanisms that drive cardiac morphogenesis remains a fundamental goal, as three-dimensional architecture greatly impacts functional capacity. During development, accurately contoured chambers balloon from a primitive tube in a process characterized by regional changes in myocardial cell size and shape. How these localized changes are achieved remains elusive. Here, we show in zebrafish that microRNA-143 (miR-143) is required for chamber morphogenesis through direct repression of adducin3 (add3), which encodes an F-actin capping protein. Knockdown of miR-143 or disruption of the miR-143-add3 interaction inhibits ventricular cardiomyocyte F-actin remodeling, which blocks their normal growth and elongation and leads to ventricular collapse and decreased contractility. Using mosaic analyses, we find that miR-143 and add3 act cell-autonomously to control F-actin dynamics and cell morphology. As proper chamber emergence relies on precise control of cytoskeletal polymerization, Add3 represents an attractive target to be fine-tuned by both uniform signals, such as miR-143, and undiscovered localized signals. Together, our data uncover the miR-143-add3 genetic pathway as essential for cardiac chamber formation and function through active adjustment of myocardial cell morphology.
揭示驱动心脏形态发生的遗传和细胞机制仍然是一个基本目标,因为三维结构对功能能力有很大影响。在发育过程中,精确轮廓的心室从原始管中膨胀,这一过程的特征是心肌细胞大小和形状的区域性变化。这些局部变化是如何实现的仍然难以捉摸。在这里,我们在斑马鱼中表明,microRNA-143(miR-143)通过直接抑制编码 F-肌动蛋白盖帽蛋白的 adducin3(add3)来控制室腔形态发生。miR-143 的敲低或 miR-143-add3 相互作用的破坏抑制了心室心肌细胞的 F-肌动蛋白重塑,从而阻止了它们的正常生长和伸长,并导致心室塌陷和收缩力降低。使用嵌合体分析,我们发现 miR-143 和 add3 自主作用以控制 F-肌动蛋白动力学和细胞形态。由于适当的腔室出现依赖于细胞骨架聚合的精确控制,Add3 代表了一个有吸引力的目标,可以通过均匀信号(如 miR-143)和未发现的局部信号进行微调。总之,我们的数据揭示了 miR-143-add3 遗传途径对于心脏腔室形成和功能至关重要,通过心肌细胞形态的主动调节。