Suppr超能文献

一种强大的评分检验方法,用于检测全基因组扫描中的正选择。

A powerful score test to detect positive selection in genome-wide scans.

机构信息

Department of Statistics, The Texas A&M University, College Station, TX 77843-3143, USA.

出版信息

Eur J Hum Genet. 2010 Oct;18(10):1148-59. doi: 10.1038/ejhg.2010.60. Epub 2010 May 12.

Abstract

One of the surest signatures of recent positive selection is a local elevation of advantageous allele frequency and linkage disequilibrium (LD). We proposed to detect such hitchhiking effects by using extended stretches of homozygosity as a surrogate indicator of recent positive selection. An extended haplotype-based homozygosity score test (EHHST) was developed to detect excess homozygosity. The EHHST conditioned on existing LD and it tested the haplotype version of the Hardy-Weinberg equilibrium. Compared with existing popular tests, which usually lack clear distribution, the EHHST is asymptotically normal, which makes analysis and applications easier. In particular, the EHHST facilitates the computation of an asymptotic P-value instead of an empirical P-value, using simulations. We evaluated by simulation that the EHHST led to appropriate false-positive rates, and it had higher or similar power as the existing popular methods. The method was applied to HapMap Phase II data. We were able to replicate previous findings of strong positive selection in 17 autosome genomic regions out of 20 reported candidates. On the basis of high EHHST values and population differentiations, we identified 15 new candidate regions that could undergo recent selection.

摘要

近期正选择的一个可靠标志是有利等位基因频率和连锁不平衡(LD)的局部升高。我们建议通过使用纯合性扩展片段作为近期正选择的替代指标来检测这种 hitchhiking 效应。提出了一种基于扩展单倍型的纯合性评分检验(EHHST)来检测过度纯合性。EHHST 受现有 LD 条件的限制,并检验了 Hardy-Weinberg 平衡的单倍型版本。与通常缺乏明确分布的现有流行检验方法相比,EHHST 渐近正态,这使得分析和应用更加容易。特别是,EHHST 可以使用模拟计算渐近 P 值,而不是经验 P 值。我们通过模拟评估发现,EHHST 导致了适当的假阳性率,并且它具有与现有流行方法相同或更高的功效。该方法应用于 HapMap Phase II 数据。我们能够复制之前在 20 个报告候选者中的 17 个常染色体基因组区域中发现的强烈正选择的结果。基于高 EHHST 值和种群分化,我们确定了 15 个新的候选区域,它们可能经历了近期的选择。

相似文献

1
A powerful score test to detect positive selection in genome-wide scans.
Eur J Hum Genet. 2010 Oct;18(10):1148-59. doi: 10.1038/ejhg.2010.60. Epub 2010 May 12.
2
A practical genome scan for population-specific strong selective sweeps that have reached fixation.
PLoS One. 2007 Mar 14;2(3):e286. doi: 10.1371/journal.pone.0000286.
4
Identity by descent between distant relatives: detection and applications.
Annu Rev Genet. 2012;46:617-33. doi: 10.1146/annurev-genet-110711-155534. Epub 2012 Sep 17.
5
Scalable linkage-disequilibrium-based selective sweep detection: a performance guide.
Gigascience. 2016 Feb 8;5:7. doi: 10.1186/s13742-016-0114-9. eCollection 2016.
6
A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations.
Bioinformatics. 2006 Sep 1;22(17):2122-8. doi: 10.1093/bioinformatics/btl365. Epub 2006 Jul 15.
7
Natural positive selection and north-south genetic diversity in East Asia.
Eur J Hum Genet. 2012 Jan;20(1):102-10. doi: 10.1038/ejhg.2011.139. Epub 2011 Jul 27.
8
A haplotype sharing method for determining the relative age of SNP alleles.
Hum Hered. 2010;69(1):52-9. doi: 10.1159/000243154. Epub 2009 Oct 2.
9
Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.
Genome Res. 2009 Nov;19(11):2154-62. doi: 10.1101/gr.095000.109. Epub 2009 Aug 21.
10
Detecting positive selection from genome scans of linkage disequilibrium.
BMC Genomics. 2010 Jan 5;11:8. doi: 10.1186/1471-2164-11-8.

引用本文的文献

1
A genome-wide scan for diversifying selection signatures in selected horse breeds.
PLoS One. 2019 Jan 30;14(1):e0210751. doi: 10.1371/journal.pone.0210751. eCollection 2019.
2
FineMAV: prioritizing candidate genetic variants driving local adaptations in human populations.
Genome Biol. 2018 Jan 17;19(1):5. doi: 10.1186/s13059-017-1380-2.
3
The role of natural selection in human evolution - insights from Latin America.
Genet Mol Biol. 2016 Jul-Sep;39(3):302-11. doi: 10.1590/1678-4685-GMB-2016-0020. Epub 2016 Aug 4.
6
Complex interplay of evolutionary forces in the ladybird homeobox genes of Drosophila melanogaster.
PLoS One. 2011;6(7):e22613. doi: 10.1371/journal.pone.0022613. Epub 2011 Jul 22.

本文引用的文献

1
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
2
Penalized estimation of haplotype frequencies.
Bioinformatics. 2008 Jul 15;24(14):1596-602. doi: 10.1093/bioinformatics/btn236. Epub 2008 May 16.
3
Genome-wide detection and characterization of positive selection in human populations.
Nature. 2007 Oct 18;449(7164):913-8. doi: 10.1038/nature06250.
4
A second generation human haplotype map of over 3.1 million SNPs.
Nature. 2007 Oct 18;449(7164):851-61. doi: 10.1038/nature06258.
5
A new approach for using genome scans to detect recent positive selection in the human genome.
PLoS Biol. 2007 Jul;5(7):e171. doi: 10.1371/journal.pbio.0050171. Epub 2007 Jun 19.
6
Localizing recent adaptive evolution in the human genome.
PLoS Genet. 2007 Jun;3(6):e90. doi: 10.1371/journal.pgen.0030090. Epub 2007 Apr 20.
7
The structure of linkage disequilibrium around a selective sweep.
Genetics. 2007 Mar;175(3):1395-406. doi: 10.1534/genetics.106.062828. Epub 2006 Dec 28.
8
Positive natural selection in the human lineage.
Science. 2006 Jun 16;312(5780):1614-20. doi: 10.1126/science.1124309.
9
How reliable are empirical genomic scans for selective sweeps?
Genome Res. 2006 Jun;16(6):702-12. doi: 10.1101/gr.5105206. Epub 2006 May 10.
10
A map of recent positive selection in the human genome.
PLoS Biol. 2006 Mar;4(3):e72. doi: 10.1371/journal.pbio.0040072. Epub 2006 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验