Suppr超能文献

人宫颈黏液蛋白质组的表征

Characterization of the Human Cervical Mucous Proteome.

作者信息

Panicker Gitika, Ye Yiming, Wang Dongxia, Unger Elizabeth R

出版信息

Clin Proteomics. 2010 Jun;6(1-2):18-28. doi: 10.1007/s12014-010-9042-3. Epub 2010 Mar 9.

Abstract

INTRODUCTION

Cervical cancer is among the most common cancers in women worldwide. Discovery of biomarkers for the early detection of cervical cancer would improve current screening practices and reduce the burden of disease. OBJECTIVE: In this study, we report characterization of the human cervical mucous proteome as the first step towards protein biomarker discovery. METHODS: The protein composition was characterized using one- and two-dimensional gel electrophoresis, and liquid chromatography coupled with mass spectrometry. We chose to use this combination of traditional biochemical techniques and proteomics to allow a more comprehensive analysis. RESULTS AND CONCLUSION: A total of 107 unique proteins were identified, with plasma proteins being most abundant. These proteins represented the major functional categories of metabolism, immune response, and cellular transport. Removal of high molecular weight abundant proteins by immunoaffinity purification did not significantly increase the number of protein spots resolved. We also analyzed phosphorylated and glycosylated proteins by fluorescent post-staining procedures. The profiling of cervical mucous proteins and their post-translational modifications can be used to further our understanding of the cervical mucous proteome.

摘要

引言

宫颈癌是全球女性中最常见的癌症之一。发现用于早期检测宫颈癌的生物标志物将改善当前的筛查方法并减轻疾病负担。目的:在本研究中,我们报告了对人宫颈黏液蛋白质组的表征,作为发现蛋白质生物标志物的第一步。方法:使用一维和二维凝胶电泳以及液相色谱-质谱联用对蛋白质组成进行表征。我们选择使用这种传统生化技术和蛋白质组学的组合,以进行更全面的分析。结果与结论:共鉴定出107种独特蛋白质,血浆蛋白最为丰富。这些蛋白质代表了代谢、免疫反应和细胞转运等主要功能类别。通过免疫亲和纯化去除高分子量丰富蛋白质并没有显著增加分辨出的蛋白质斑点数量。我们还通过荧光后染色程序分析了磷酸化和糖基化蛋白质。宫颈黏液蛋白质及其翻译后修饰的分析可用于加深我们对宫颈黏液蛋白质组的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d64/2861172/2c88afe0143c/12014_2010_9042_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验