Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 2463, 3001 Leuven, Belgium.
J Agric Food Chem. 2010 Sep 8;58(17):9362-71. doi: 10.1021/jf100474m.
Endo-1,4-beta-d-xylanases (EC 3.2.1.8, xylanases) and xylanase inhibitors, that is, TAXI (Triticum aestivum xylanase inhibitor), XIP (xylanase inhibiting protein), and TLXI (thaumatin-like xylanase inhibitor) type xylanase inhibitors, which naturally occur in cereals, are believed to be at the basis of a significant part of the variability in biotechnological functional properties of cereals. Xylanase inhibitors in particular affect grain functionality during processing and in animal feeds when xylanases are used to improve processing parameters and product quality. In the present study the variability of xylanase, TAXI, and XIP activities was quantified in different cereals, including different wheat types [common wheat (Triticum aestivum L.), durum wheat (Triticum durum Desf.), spelt wheat (Triticum spelta L.), einkorn wheat (Triticum monococcum L.), and emmer wheat (Triticum dicoccum Schübler)], barley (Hordeum vulgare L.), rye (Secale cereale L.), and oat (Avena sativa L.), and the contribution of genotype and environment to this variability in common wheat was estimated. Substantial differences in xylanase, TAXI, and XIP activities exist between the different cereal types and varieties. Under the experimental conditions of this study, the durum wheat samples show very high xylanase activities compared to the other cereals. High TAXI and XIP activities were measured in, for example, common wheat, spelt wheat, and rye, whereas low activities occur in barley and oat. For wheat, a significant part of the variability in inhibitor levels can be explained by genotype, whereas xylanase activity is most strongly determined by environment. The results obtained suggest that plant breeders and industry to certain extent can select for wheat varieties with high or low xylanase inhibition activities, but the relatively high contribution of the genotype-environment interaction term to the total variability in inhibition activities indicates that TAXI and XIP activities are not very stable breeding parameters.
内切-1,4-β-木聚糖酶(EC 3.2.1.8,木聚糖酶)和木聚糖酶抑制剂,即 TAXI(小麦木聚糖酶抑制剂)、XIP(木聚糖酶抑制蛋白)和 TLXI(硫胺素类似木聚糖酶抑制剂),这些物质天然存在于谷物中,被认为是谷物生物技术功能特性变异性的重要基础。木聚糖酶抑制剂特别是在加工过程中以及在动物饲料中使用木聚糖酶来改善加工参数和产品质量时,会影响谷物的功能。在本研究中,量化了不同谷物中木聚糖酶、TAXI 和 XIP 活性的变异性,包括不同的小麦类型[普通小麦(Triticum aestivum L.)、硬粒小麦(Triticum durum Desf.)、斯佩尔特小麦(Triticum spelta L.)、一粒小麦(Triticum monococcum L.)和二粒小麦(Triticum dicoccum Schübler)]、大麦(Hordeum vulgare L.)、黑麦(Secale cereale L.)和燕麦(Avena sativa L.),并估计了基因型和环境对普通小麦这种变异性的贡献。不同谷物类型和品种之间的木聚糖酶、TAXI 和 XIP 活性存在显著差异。在本研究的实验条件下,与其他谷物相比,硬质小麦样品显示出非常高的木聚糖酶活性。在普通小麦、斯佩尔特小麦和黑麦中测量到高的 TAXI 和 XIP 活性,而在大麦和燕麦中则活性较低。对于小麦,抑制剂水平的变异性有一部分可以由基因型来解释,而木聚糖酶活性主要由环境决定。研究结果表明,植物育种者和工业界在一定程度上可以选择具有高或低木聚糖酶抑制活性的小麦品种,但抑制活性的总变异性中基因型-环境互作项的相对较大贡献表明,TAXI 和 XIP 活性不是非常稳定的育种参数。