Suppr超能文献

真核起始因子 (eIF) 4G HEAT 结构域促进酵母中依赖和不依赖于 eIF4A mRNA 解旋酶的翻译重新起始。

The eukaryotic initiation factor (eIF) 4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase.

机构信息

Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA.

出版信息

J Biol Chem. 2010 Jul 16;285(29):21922-33. doi: 10.1074/jbc.M110.132027. Epub 2010 May 12.

Abstract

Translation re-initiation provides the molecular basis for translational control of mammalian ATF4 and yeast GCN4 mediated by short upstream open reading (uORFs) in response to eIF2 phosphorylation. eIF4G is the major adaptor subunit of eIF4F that binds the cap-binding subunit eIF4E and the mRNA helicase eIF4A and is also required for re-initiation in mammals. Here we show that the yeast eIF4G2 mutations altering eIF4E- and eIF4A-binding sites increase re-initiation at GCN4 and impair recognition of the start codons of uORF1 or uORF4 located after uORF1. The increase in re-initiation at GCN4 was partially suppressed by increasing the distance between uORF1 and GCN4, suggesting that the mutations decrease the migration rate of the scanning ribosome in the GCN4 leader. Interestingly, eIF4E overexpression suppressed both the phenotypes caused by the mutation altering eIF4E-binding site. Thus, eIF4F is required for accurate AUG selection and re-initiation also in yeast, and the eIF4G interaction with the mRNA-cap appears to promote eIF4F re-acquisition by the re-initiating 40 S subunit. However, eIF4A overexpression suppressed the impaired AUG recognition but not the increase in re-initiation caused by the mutations altering eIF4A-binding site. These results not only provide evidence that mRNA unwinding by eIF4A stimulates start codon recognition, but also suggest that the eIF4A-binding site on eIF4G made of the HEAT domain stimulates the ribosomal scanning independent of eIF4A. Based on the RNA-binding activities identified within the unstructured segments flanking the eIF4G2 HEAT domain, we discuss the role of the HEAT domain in scanning beyond loading eIF4A onto the pre-initiation complex.

摘要

翻译重新起始为哺乳动物 ATF4 和酵母 GCN4 的翻译控制提供了分子基础,这种控制是通过翻译起始因子 2(eIF2)磷酸化后短的上游开放阅读框(uORF)介导的。eIF4G 是 eIF4F 的主要衔接亚基,它结合帽结合亚基 eIF4E 和 mRNA 解旋酶 eIF4A,并且在哺乳动物中也需要重新起始。在这里,我们发现改变 eIF4E 和 eIF4A 结合位点的酵母 eIF4G2 突变增加了 GCN4 的重新起始,并损害了对位于 uORF1 之后的 uORF1 或 uORF4 的起始密码子的识别。uORF1 与 GCN4 之间的距离增加,部分抑制了 GCN4 处重新起始的增加,这表明突变降低了扫描核糖体在 GCN4 前导区的迁移率。有趣的是,eIF4E 的过表达抑制了改变 eIF4E 结合位点的突变引起的两种表型。因此,eIF4F 不仅在酵母中也需要准确的 AUG 选择和重新起始,而且 eIF4G 与 mRNA-帽的相互作用似乎促进了重新起始的 40S 亚基重新获得 eIF4F。然而,eIF4A 的过表达抑制了 AUG 识别受损,但不抑制改变 eIF4A 结合位点的突变引起的重新起始增加。这些结果不仅提供了证据表明 eIF4A 解旋促进起始密码子识别,而且还表明由 HEAT 结构域组成的 eIF4G 上的 eIF4A 结合位点刺激核糖体扫描独立于 eIF4A。基于在 eIF4G2 HEAT 结构域侧翼的非结构化片段中鉴定的 RNA 结合活性,我们讨论了 HEAT 结构域在加载 eIF4A 到起始前复合物之外扫描中的作用。

相似文献

2
Yeast eukaryotic initiation factor 4B (eIF4B) enhances complex assembly between eIF4A and eIF4G in vivo.
J Biol Chem. 2013 Jan 25;288(4):2340-54. doi: 10.1074/jbc.M112.398537. Epub 2012 Nov 26.
6
Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9564-9. doi: 10.1073/pnas.0800418105. Epub 2008 Jul 7.
7
eIF4F is a thermo-sensing regulatory node in the translational heat shock response.
Mol Cell. 2024 May 2;84(9):1727-1741.e12. doi: 10.1016/j.molcel.2024.02.038. Epub 2024 Mar 27.

引用本文的文献

2
eIF4F complex dynamics are important for the activation of the integrated stress response.
Mol Cell. 2024 Jun 6;84(11):2135-2151.e7. doi: 10.1016/j.molcel.2024.04.016.
3
The Helix-Loop-Helix motif of human EIF3A regulates translation of proliferative cellular mRNAs.
PLoS One. 2023 Sep 28;18(9):e0292080. doi: 10.1371/journal.pone.0292080. eCollection 2023.
6
DDX3 regulates endoplasmic reticulum stress-induced ATF4 expression.
Sci Rep. 2017 Oct 23;7(1):13832. doi: 10.1038/s41598-017-14262-7.
7
Why is start codon selection so precise in eukaryotes?
Translation (Austin). 2014 Mar 12;2(1):e28387. doi: 10.4161/trla.28387. eCollection 2014.
8
Rps5-Rps16 communication is essential for efficient translation initiation in yeast S. cerevisiae.
Nucleic Acids Res. 2014 Jul;42(13):8537-55. doi: 10.1093/nar/gku550. Epub 2014 Jun 19.
9
Characterization of the role of eIF4G in stimulating cap- and IRES-dependent translation in aplysia neurons.
PLoS One. 2013 Sep 3;8(9):e74085. doi: 10.1371/journal.pone.0074085. eCollection 2013.

本文引用的文献

1
The mechanism of eukaryotic translation initiation and principles of its regulation.
Nat Rev Mol Cell Biol. 2010 Feb;11(2):113-27. doi: 10.1038/nrm2838.
2
Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation.
Cell. 2009 Feb 6;136(3):447-60. doi: 10.1016/j.cell.2009.01.014.
3
Translation initiation on mammalian mRNAs with structured 5'UTRs requires DExH-box protein DHX29.
Cell. 2008 Dec 26;135(7):1237-50. doi: 10.1016/j.cell.2008.10.037.
5
Int6/eIF3e promotes general translation and Atf1 abundance to modulate Sty1 MAPK-dependent stress response in fission yeast.
J Biol Chem. 2008 Aug 8;283(32):22063-75. doi: 10.1074/jbc.M710017200. Epub 2008 May 23.
6
Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes.
EMBO J. 2008 Jun 4;27(11):1609-21. doi: 10.1038/emboj.2008.90. Epub 2008 May 8.
7
Localization and characterization of protein-protein interaction sites.
Methods Enzymol. 2007;429:139-61. doi: 10.1016/S0076-6879(07)29007-X.
8
Translation factor control of ribosome conformation during start codon selection.
Genes Dev. 2007 Jun 1;21(11):1280-7. doi: 10.1101/gad.1562707.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验