Suppr超能文献

在均匀流场中完成蛋白质展开的全原子流体动力学研究。

Complete all-atom hydrodynamics of protein unfolding in uniform flow.

机构信息

Department of Bioinformatics and Computational Biology, George Mason University, Manassas, VA, USA.

出版信息

Nanotechnology. 2010 Jun 11;21(23):235101. doi: 10.1088/0957-4484/21/23/235101. Epub 2010 May 13.

Abstract

The unfolding dynamics of a protein, ubiquitin, pinned in several uniform flows, was studied at low and high flow rates in an all-atom style through a non-equilibrium molecular dynamics approach with explicit water molecules included. Atomic hydrodynamic force components on individual amino acids, as a function of time, due to the collisional interactions with the flowing water molecules were calculated explicitly. The protein conformational change in response to those time-varying forces was computed completely at the high flow rate up to nanosecond until the fully stretched state was reached. The end-to-end length of the single ubiquitin protein molecule at high flow rate is smoothly increasing. The step-like jumps between metastable states that describe the microm ms(-1) scale force pulling experiments conducted on polyubiquitins at low flow rates, are not seen at the high flow speeds necessary to computationally probe the ns nm(-1) scale regime. No unfolding was observed in the low flow rate atomic computations at nanosecond scale while partial and complete unfolding was observed in the coarse-grained low flow rate computations at microsecond scale. Examination of the all-atom computation of the time variation of the hydrodynamic forces on, and the velocity components of, the protein molecule unveiled to some extent the details of the complexity of the hydrodynamic friction variation in the nm ns(-1) regime of high rate flow-driven protein unfolding. This demonstrates quantitatively that all-atom computations are more suitable than the Langevin equation or Brownian dynamics methods for probing the interaction dynamics and resulting conformational dynamics of protein unfolding in strong flows on nm ns(-1) time/length scales while the reverse is true for investigation of slow, diffusively driven systems.

摘要

在包含显式水分子的非平衡分子动力学方法中,以全原子模型研究了在低流速和高流速下,几种均匀流中固定的蛋白质泛素的展开动力学。通过显式计算与流动水分子的碰撞相互作用,计算了单个氨基酸随时间变化的原子流体动力作用力分量。在高流速下,完全计算了蛋白质对这些时变力的构象变化,直至达到完全伸展状态,时间长达纳秒。在高流速下,单泛素蛋白分子的末端到末端长度平滑增加。在低流速下对多泛素进行的微毫秒(-1)尺度力牵引实验中,描述亚稳状态之间阶跃式跳跃的情况,在高流速下以纳秒纳米(-1)尺度进行计算探测时并未出现。在低流速的原子计算中,在纳秒尺度上没有观察到展开,而在微秒尺度的粗粒化低流速计算中,观察到部分和完全展开。对在纳米秒时间尺度上的蛋白质分子上的流体动力作用力和速度分量的时变进行全原子计算的检查,在某种程度上揭示了在高流速下的纳米秒纳米(-1)范围内的流体动力摩擦变化的复杂性的细节。这定量地证明了,在纳米秒纳秒(-1)时间/长度尺度上,全原子计算比 Langevin 方程或布朗动力学方法更适合探测强流驱动的蛋白质展开的相互作用动力学和由此产生的构象动力学,而对于研究缓慢的、扩散驱动的系统,则相反。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验