流场在牵引丝蜘蛛丝蛋白自组装中的作用。
The role of flow in the self-assembly of dragline spider silk proteins.
机构信息
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
BioQuant, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
出版信息
Biophys J. 2023 Nov 7;122(21):4241-4253. doi: 10.1016/j.bpj.2023.09.020. Epub 2023 Oct 5.
Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%-80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.
水动力流在蜘蛛管道中诱导拖丝蜘蛛丝蛋白(丝氨酸)发生构象变化,并驱动其组装,但潜在的物理机制仍难以捉摸。在这里,我们通过原子和粗粒度分子动力学模拟的互补策略来解决这个具有挑战性的多尺度问题,同时施加均匀流。对单系留蜘蛛丝肽进行了分子水平的构象变化分析。均匀流导致螺旋到拉伸的转变,并将丙氨酸残基推向β片和聚脯氨酸 II 构象。使用多粒子碰撞动力学对多个半柔性嵌段共聚物的组装过程进行粗粒度模拟表明,当丝氨酸延伸度较低时,丝氨酸更容易聚集,但形成的低阶组装体。在中等至较大的肽延伸度(50%-80%)下,组装速度减慢且具有可逆性,频繁发生缔合和解离事件,而丝氨酸排列增加且丙氨酸重复形成有序区域。我们的工作强调了流在通过增强对齐和动力学可逆性来指导丝自组装成坚韧纤维方面的作用,这一机制可能也与其他依赖于水动力流的蛋白质的功能相关。