Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Finland.
Phys Chem Chem Phys. 2010 Jul 14;12(26):7018-25. doi: 10.1039/b923891c. Epub 2010 May 13.
Nuclear magnetic resonance (NMR) of paramagnetic molecules (pNMR) provides detailed information on the structure and bonding of metallo-organic systems. The physical mechanisms underlying chemical shifts are considerably more complicated in the presence of unpaired electrons than in the case of diamagnetic compounds. We report for the first time a combined first-principles theoretical as well as experimental liquid-state (11)B NMR study of a paramagnetic compound, applied on the 3-Fe(III)-(1,2-C(2)B(9)H(11))(2) metallaborane, which is an electronically open-shell structure where the iron centre binds two hemispherical boron-carbon cages. We show that this combined theoretical and experimental analysis constitutes a firm basis for the assignment of experimental (11)B NMR chemical shifts in paramagnetic metallaboranes. In the calculations, the roles of the different physical contributions to the pNMR chemical shift are elaborated, and the performance of different popular exchange-correlation functionals of density-functional theory as well as basis sets, are evaluated. A dynamic correction to the calculated shifts via first-principles molecular dynamics simulations is found to be important. Solvent effects on the chemical shifts were computed and found to be of minor significance.
顺磁共振(paramagnetic resonance,NMR)为顺磁分子(paramagnetic molecules,pNMR)提供了有关金属有机系统结构和键合的详细信息。与抗磁性化合物相比,在存在未成对电子的情况下,化学位移的物理机制要复杂得多。我们首次报道了一种组合的第一性原理理论和实验液态(11)B NMR 研究顺磁化合物的方法,应用于[3-Fe(III)-(1,2-C(2)B(9)H(11))(2)](-)金属硼烷,它是一个电子开壳结构,其中铁中心结合两个半球形硼碳笼。我们表明,这种组合的理论和实验分析为顺磁金属硼烷的实验(11)B NMR 化学位移的分配提供了坚实的基础。在计算中,详细阐述了不同物理贡献对 pNMR 化学位移的作用,评估了不同流行的密度泛函理论交换相关泛函和基组的性能。发现通过第一性原理分子动力学模拟对计算位移进行动态修正很重要。还计算了化学位移的溶剂效应,发现其影响较小。