Suppr超能文献

链接局部环境与超精细位移:顺磁 Fe(III)磷酸盐的(31)P 和(7)Li 固态 NMR 实验与理论联合研究。

Linking local environments and hyperfine shifts: a combined experimental and theoretical (31)P and (7)Li solid-state NMR study of paramagnetic Fe(III) phosphates.

机构信息

Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.

出版信息

J Am Chem Soc. 2010 Dec 1;132(47):16825-40. doi: 10.1021/ja102678r. Epub 2010 Nov 5.

Abstract

Iron phosphates (FePO(4)) are among the most promising candidate materials for advanced Li-ion battery cathodes. This work reports upon a combined nuclear magnetic resonance (NMR) experimental and periodic density functional theory (DFT) computational study of the environments and electronic structures occurring in a range of paramagnetic Fe(III) phosphates comprising FePO(4) (heterosite), monoclinic Li(3)Fe(2)(PO(4))(3) (anti-NASICON A type), rhombohedral Li(3)Fe(2)(PO(4))(3) (NASICON B type), LiFeP(2)O(7), orthorhombic FePO(4)·2H(2)O (strengite), monoclinic FePO(4)·2H(2)O (phosphosiderite), and the dehydrated forms of the latter two phases. Many of these materials serve as model compounds relevant to battery chemistry. The (31)P spin-echo mapping and (7)Li magic angle spinning NMR techniques yield the hyperfine shifts of the species of interest, complemented by periodic hybrid functional DFT calculations of the respective hyperfine and quadrupolar tensors. A Curie-Weiss-based magnetic model scaling the DFT-calculated hyperfine parameters from the ferromagnetic into the experimentally relevant paramagnetic state is derived and applied, providing quantitative finite temperature values for each phase. The sensitivity of the hyperfine parameters to the composition of the DFT exchange functional is characterized by the application of hybrid Hamiltonians containing admixtures 0%, 20%, and 35% of Fock exchange. Good agreement between experimental and calculated values is obtained, provided that the residual magnetic couplings persisting in the paramagnetic state are included. The potential applications of a similar combined experimental and theoretical NMR approach to a wider range of cathode materials are discussed.

摘要

磷酸铁(FePO4)是最有前途的先进锂离子电池正极材料之一。本工作结合核磁共振(NMR)实验和周期性密度泛函理论(DFT)计算,研究了一系列顺磁 Fe(III) 磷酸盐的环境和电子结构,这些磷酸盐包括 FePO4(异铁磷矿)、单斜 Li3Fe2(PO4)3(反-NASICON A 型)、三方 Li3Fe2(PO4)3(NASICON B 型)、LiFeP2O7、正交 FePO4·2H2O(斯捷克铁磷矿)、单斜 FePO4·2H2O(磷铁石)以及后两者的脱水相。这些材料中的许多都作为与电池化学相关的模型化合物。(31)P 自旋回波成像和(7)Li 魔角旋转 NMR 技术得到了感兴趣物种的超精细位移,辅以各相应超精细和四极张量的周期性混合功能 DFT 计算。基于居里-外斯的磁模型,从铁磁态到实验相关的顺磁态对 DFT 计算的超精细参数进行标度,为每个相提供定量的有限温度值。通过应用含有 0%、20%和 35%福克交换的混合哈密顿量,对 DFT 交换函数中混合函数的超精细参数的敏感性进行了特征化。在考虑到顺磁态中残留磁耦合的情况下,实验值与计算值吻合良好。讨论了类似的实验与理论 NMR 结合方法在更广泛的正极材料中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验